ENCOMIENDA DE GESTIÓN PARA LA REALIZACIÓN DE TRABAJOS CIENTÍFICO-TÉCNICOS DE APOYO A LA SOSTENIBILIDAD Y PROTECCIÓN DE LAS AGUAS SUBTERRÁNEAS

Actividad 6:

Actuaciones en Aguas Subterráneas para la Revisión de los Planes de Sequía

Demarcación Hidrográfica del Cantábrico

ANEXO

Año 2010

MINISTERIO DE CIENCIA E INNOVACIÓN MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

El presente documento se integra en el marco de la Encomienda de Gestión de la Dirección General del Agua (DGA) al Instituto Geológico y Minero de España (IGME), para la realización de trabajos científico-técnicos de *Apoyo a la Sostenibilidad y Protección de las Aguas Subterráneas*. Recoge los trabajos realizados para conseguir los objetivos de la Actividad 6 de la citada Encomienda. En la realización, además de los dos centros mencionados, ha participado la Demarcación Hidrográfica del Cantábrico, contando con TIHGSA para la asistencia técnica.

EQUIPO DE TRABAJO:

- José María Pernía Llera. IGME
- Silvino Castaño Castaño. IGME
- José María Ruiz Hernández. IGME
- Fernando Octavio de Toledo y Ubieto. DGA
- Juan Manuel Fernández Estrada. DHC
- José Luis Herrero Pacheco. TIHGSA
- Esperanza Reaño García. TIHGSA
- Pedro González Váquez. TIHGSA

ANEXO DE FICHAS

MASb 012.001 (EO-NAVIA-NARCEA)

MASb 012.002 (SOMIEDO-TRUBIA-PRAVIA)

MASb 012.003 (CANDAS)

MASb 012.004 (LLANTONES-PINZALES-NOREÑA)

MASb 012.005 (VILLAVICIOSA)

MASb 012.006 (OVIEDO-CANGAS DE ONIS)

MASb 012.007 (LLANES-RIBADESELLA)

MASb 012.008 (SANTILLANA-SAN VICENTE DE LA BARQUERA)

MASb 012.009 (SANTANDER-CAMARGO)

MASb 012.010 (ALISA-RAMALES)

MASb 012.011 (CASTRO URDIALES)

MASb 012.012 (CUENCA CARBONIFERA ASTURIANA)

MASb 012.013 (REGIÓN DEL PONGA)

MASb 012.014 (PICOS DE EUROPA-PANES)

MASb 012.015 (CABUÉRNIGA)

MASb 012.016 (PUENTE VIESGO-BESAYA)

MASb 012.017 (PUERTO DEL ESCUDO)

MASb 012.018 (ALTO DEVA-ALTO CARES)

MASb 012.019 (PEÑA UBIÑA -PEÑA RUEDA)

MASb 012.020 (CABECERA DEL NAVIA)

MASb 013.001 (ETXANO)

MASb 013.002 (OIZ)

MASb 013.003 (BALMASEDA-ELORRIO)

MASb 013.004 (ARAMOTZ)

MASb 013.005 (ITXINA)

MASb 013.006 (MENA-ORDUÑA)

MASb 013.007 (SALVADA)

MASb 013.008 (ANDOAIN)

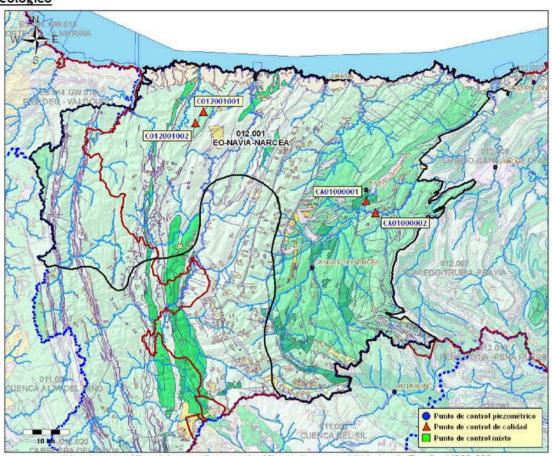
MASb 013.009 (TOLOSA)

MASb 013.010 (MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL)

MASb 013.011 (ARAMA)

MASb 013.012 (BALSABURUA-ULZAMA)

MASb 013.013 (BEASAIN) MASb 013.014 (ARALAR)



CARACTERÍSTICAS GENERALES

MASS 012.001 - EO-NAVIA-NARCEA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: GALICIA, ASTURIAS

Provincia/s: LUGO, ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
3918,45 km²	% Superficie	2,03 %	3,33 %	5,67 %	76,98 %	11,58 %

Características hidrogeológicas:

La masa es una envolvente de núcleos urbanos de más de 50 habitantes que se abastecen a partir de aguas subterráneas. Al Norte limita con el mar Cantábrico, al Oeste el límite se establece por la divisoria entre las cuencas de los ríos Nansa y Eo. El límite Este, corresponde al contacto entre los materiales paleozoicos que componen esta masa (Fm. Furada y Formigoso), con las calizas y dolomías devónicas de la masa Somiedo-Trubia-Pravia (Grupo Rañeces). Esta formada principalmente por pizarras, areniscas y cuarcitas del paleozoico, de la zona Asturoccidental Leonesa, afectadas por intensos plegamientos, que afloran en bandas con dirección N-S, arqueándose hacia el Este. En la zona más occidental aparecen intrusiones graníticas. La recarga se produce por infiltración de agua de lluvia sobre las zonas de mayor permeabilidad.

Puntos de control piezométrico

Puntos de control hidroquímico

Red básica Demarcación: 4 puntos (periodo del 14/06/2006 al 04/03/2008)

CARACTERÍSTICAS GENERALES

MASb 012.001 - EO-NAVIA-NARCEA

Ficha 1

Puntos de coi	ntrol										
Piezometría											
C-11-1		×									
Calidad		lu lu									
Red básica Do	emarcac	ión							Última	medida	
<u>Código</u>	X	Y	<u>Cota</u>	Naturaleza	Prof.	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad	Nitrato	
	(UTM)	(UTM)	(m.s.n.m.)		<u>(m)</u>				(µS/cm)	(mg/l)	
C012001001	187906	4820947	333,00	manantial		2	05/2007	03/2008	145,00	10,10	
	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica				***	Análisis con balanc	e anómalo:	0
C012001002	186059	4818478	494,00	pozo		2	05/2007	03/2008	68,00	5,30	
	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada magnésico	cálcica	Č	21	77	Análisis con balanc	e anómalo:	0
CA01000001	223354	4801466	359,00	manantial		3	06/2006	02/2008	355,00	3,40	
	Fa	acies (prom	nedio): Bicarbo	natada cálcico ma	agnésica			71	Análisis con balanc	e anómalo:	0
CA01000002	225323	4798780	289,00	manantial		3	06/2006	02/2008	90,00	0,50	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.001 - EO-NAVIA-NARCEA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(<u>*</u>	2	ě	# <u></u>		1,36

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	(
Pérdidas en cauces	8.5.	17 8	5 80
Transferencias laterales	X.	•	\$ # 8
Retornos de riego	9 F		: €2
Recursos Renovables (RREN)	922,94	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>	-	*
Salidas al mar	85	•	
Humedales	(*)	-	3
Manantiales			<u>.</u>
Total Restricciones Medioambientales (RMED)	275,67	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 647,27

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
1,36	647,27	0,00	645,91

Clasificación según el Índice de Explotación (le): Disponibilidad

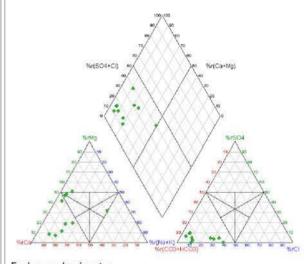
CARACTERÍSTICAS PIEZOMÉTRICAS MASS 012.001 - EO-NAVIA-NARCEA

Ficha 2

Análisis de la tendencia de la serie histórica	
No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.001 - EO-NAVIA-NARCEA

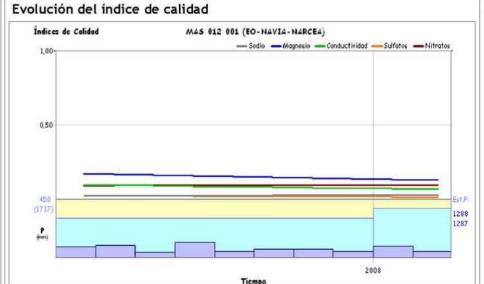

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 4 (Red Básica Demarcación)			Period	Periodo común mayo 2007-febrero 2008 (10 me			eses/0,83 años)	
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a 20°	°C) 10	207,65	168,23	245,00	168,23	O -103,1042 (μS/cm a 20°C/año	2500,00	
Magnesio (mg/l Mg)	10	7,60	6,47	8,68	6,47	() -2,9629 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	10	4,65	4,53	4,78	4,78	(0,3459 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	10	4,93	4,60	5,28	5,28	() 0,9065 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	10	4,66	3,28	5,95	3,28	● -3,5715 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 60,00 % Bicarbonatada cálcica (6 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,07	
Magnesio	0,13	
Nitratos	0,10	
Sodio	0,03	
Sulfatos	0,01	

Clasificación según el Índice de Calidad (Ic): Bueno

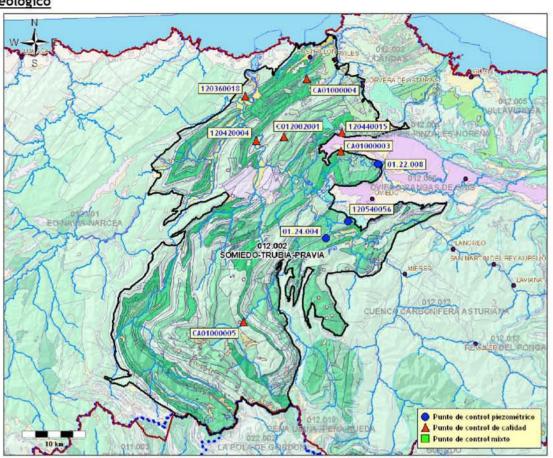
Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.001 - EO-NAVIA-NARCEA

Ficha 3

Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	**
Facies predominante:	
Evolución histórica del índice de calidad	



CARACTERÍSTICAS GENERALES

MASS 012.002 - SOMIEDO-TRUBIA-PRAVIA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
1571,89 km ²	% Superficie	4,69 %	12,84 %	41,51 %	18,07 %	22,58 %

Características hidrogeológicas:

Esta masa presenta una estructura de tipo 'epidérmica' con deformaciones en superficie y cabalgamientos con dirección N-S arqueándose hacia el E. En el sector oriental sólo existe un acuífero precarbonífero (fm. Láncara) de reducido interés. Los acuíferos son formaciones independientes (calizas, dolomías del Grupo Rañeces, Calizas de Moniello, calizas de la Fm. Candás, y areniscas de la Fm. Piñeres), separadas por materiales impermeables, salvo conexiones por procesos tectónicos. La recarga tiene lugar a partir del agua de la lluvia y en menor cuantía por infiltración de la escorrentía superficial. La descarga se produce a través de los ríos y arroyos que atraviesan la masa (ríos Nalón, Narcea, Pigüeña, Nonaya y Ferrería y arroyos subsidiarios) y también por medio de numerosos manantiales de escasa cuantía, y directamente al mar.

Puntos de control piezométrico

- Red básica Demarcación: 2 puntos (periodo del 29/01/2002 al 24/03/2009)
- Red IGME: 1 punto (periodo del 29/05/1981 al 15/06/1981)

Puntos de control hidroquímico

- Red básica Demarcación: 4 puntos (periodo del 14/06/2006 al 20/02/2008)
- Red IGME: 3 puntos (periodo del 13/07/1981 al 23/04/2001)

CARACTERÍSTICAS GENERALES

MASS 012.002 - SOMIEDO-TRUBIA-PRAVIA

Ficha 1

P	121	22222222
Puntos	ae	control

Piezometría

<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.22.008	270717	4810613	150,00			76	01/2002	03/2009	141,57	144,49	143,07
01.24.004	262453	4798900	311,00			75	03/2002	03/2009	136,00	147,29	144,91
ed IGME											
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
120540056	265959	4801566	167,00	sondeo	301	3	05/1981	06/1981	162,77	162,85	162,83

Calidad

ed básica D	1000	AD BALLEY		7					Ottima	medida	
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
C012002001	255789	4814890	385,00	manantial		2	05/2007	02/2008	110,00	31,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcico só	dica				Análisis con balanc	e anómalo:	
CA01000003	264792	4812615	149,00	manantial		3	06/2006	02/2008	550,00	9,10	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:	31
CA01000004	259380	4824045	78,00	manantial		3	06/2006	02/2008	520,00	8,70	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:	8
CA01000005	249592	4785662	389,00	manantial		3	06/2006	02/2008	270,00	2,40	
	RESTREET.	2/443357	389,00 ledio): Bicarbor			3	06/2006	02/2008	270,00 Análisis con balanc Última	e anómalo:	H
	RESTREET.	2/443357	2200000		Prof.	3 Análisis	06/2006 Inicio	02/2008 <u>Fin</u>	Análisis con balanc	e anómalo:	
ed IGME	<u>X</u>	acies (prom	edio): Bicarbor	natada cálcica	17/25-17				Análisis con balanc Última	e anómalo: medida <u>Nitrato</u> s	
	X (UTM) 249836	Y (UTM) 4821310	Cota (m.s.n.m.)	natada cálcica Naturaleza sondeo	<u>(m)</u>	Análisis	Inicio	<u>Fin</u>	Análisis con balanc Última Conductividad (µS/cm)	e anómalo: medida Nitratos (mg/l) 18,00	(a)
ed IGME Código	X (UTM) 249836	Y (UTM) 4821310	Cota (m.s.n.m.)	natada cálcica Naturaleza sondeo	<u>(m)</u>	Análisis	Inicio	<u>Fin</u>	Análisis con balanc Última Conductividad (µS/cm) 428,00	e anómalo: medida Nitratos (mg/l) 18,00	ž
ed IGME <u>Código</u> 120360018	X (UTM) 249836 Fa 251505	Y (UTM) 4821310 acies (prom	Cota (m.s.n.m.) 30,00 ledio): Bicarbor	Naturaleza sondeo natada cálcica manantial	<u>(m)</u>	Análisis 19	<u>Inicio</u> 08/1989	<u>Fin</u>	Análisis con balanc Última Conductividad (µS/cm) 428,00 Análisis con balanc	medida Nitratos (mg/l) 18,00 e anómalo: 8,00	ž

CARACTERÍSTICAS VOLUMÉTRICAS

MASb 012.002 - SOMIEDO-TRUBIA-PRAVIA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)	<u> </u>	** \$3	12 24	*	1,15

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	# 0
Pérdidas en cauces	8.5.	17 8	5
Transferencias laterales	X.	•	\$ # \$
Retornos de riego	9 F		18 2
Recursos Renovables (RREN)	506,07	Fuente: D.H. Cantábrico (2009)	

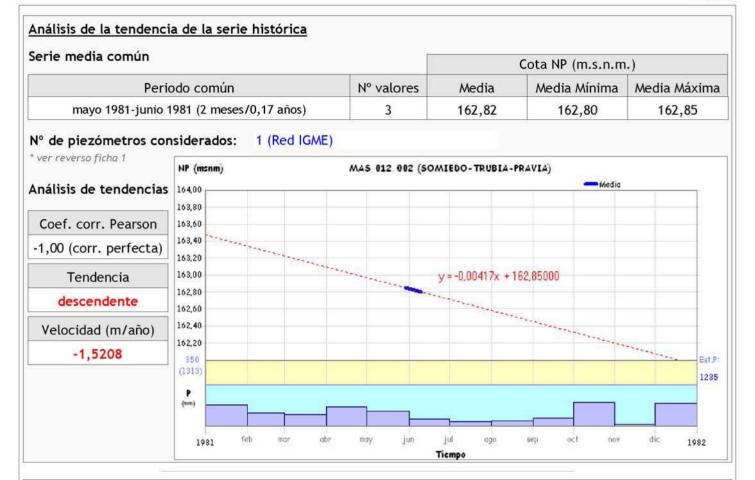
Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		2	
Salidas al mar	\$ 2		•
Humedales	je:	#1	3 1
Manantiales		•	•
Total Restricciones Medioambientales (RMED)	117,01	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 389,06

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
1,15	389,06	0,00	387,91


Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.002 - SOMIEDO-TRUBIA-PRAVIA

Ficha 2

Análisis de la tendencia de la serie actual

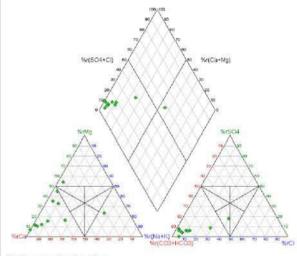
Serie media común

Serie media comun			.)	
Periodo común	Nº valores	Media	Media Minima	Media Máxima
marzo 2002-marzo 2009 (85 meses/7,08 años)	150	144,04	139,71	145,42

Nº de piezómetros considerados: 2 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.002 - SOMIEDO-TRUBIA-PRAVIA

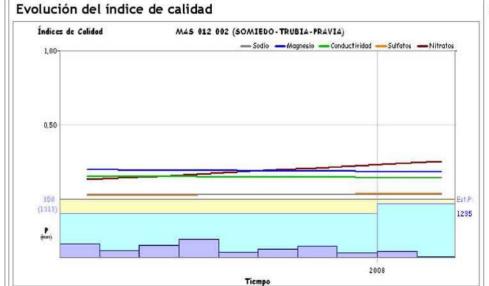

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 4 (Red Básica De	marcación)	Period	o común	mayo 2007-febrero 2008 (10 meses/0,83 años)		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20	0°C) 11	378,02	362,50	392,50	362,50	• -40,0091 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	11	9,61	9,23	9,98	9,23	() -0,9988 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	11	9,60	6,63	12,80	12,80	(8,2292 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	11	6,27	6,05	6,50	6,50	() 0,6001 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	11	8,11	6,90	9,40	9,40	() 3,3329 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 81,82 % Bicarbonatada cálcica (9 muestra/s)

Valores del Índice de Calidad (Ic)

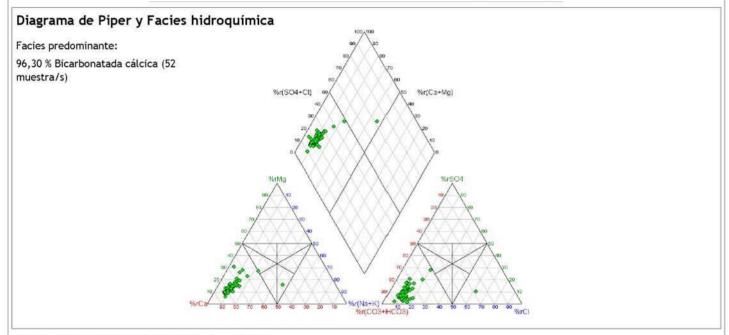
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,15	
Magnesio	0,18	
Nitratos	0,26	
Sodio	0,03	
Sulfatos	0,04	

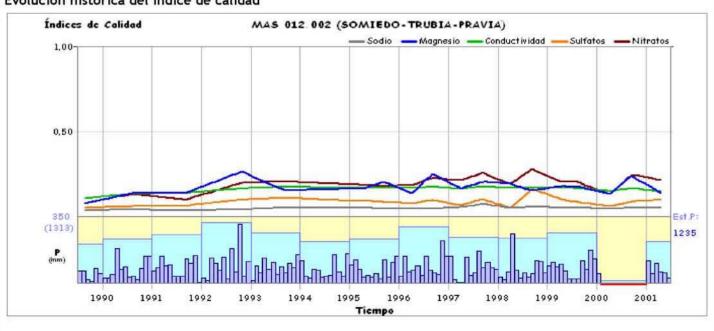
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.002 - SOMIEDO-TRUBIA-PRAVIA

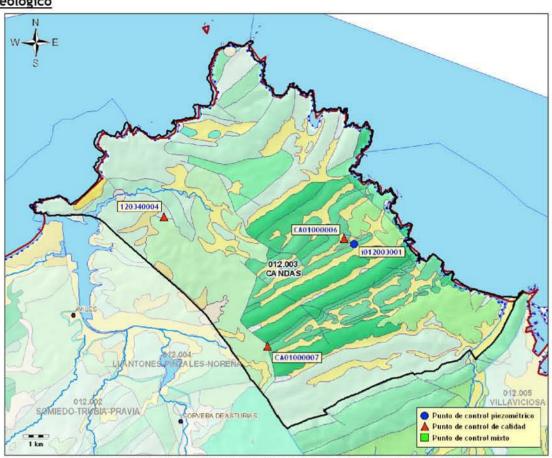
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	3 (Red IG	ME)	Periodo común		agosto 1989-abril 2001 (141 meses/11,75 años)		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20°C)	58	399,98	269,67	445,33	369,00	(7,2043 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	56	8,65	4,00	13,33	7,00	0,1763 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	58	9,23	4,00	14,00	10,67	(0,4851 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	58	9,88	7,33	15,00	11,00	(0,3116 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	58	21,65	12,67	41,00	24,33	() 0,5956 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.003 - CANDAS

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 hase cartográfica del mapa litoestratigráfico y de permeabilidades de España

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
128,03 km ²	% Superficie	16,44 %	7,10 %	26,38 %	30,19 %	19,06 %

Características hidrogeológicas:

Limita al N con el mar Cantábrico, al SE con la falla del Cabo de Torres y al SO a través del contacto con los materiales jurásicos de la masa Llantones-Pinzales-Noreña. Los acuíferos corresponden a fm. precarboníferas, con permeabilidad por fracturación y karstificación, donde T y S son muy variables. Están afectados por pliegues NE-SO y fallas. Además, hay pequeños afloramientos impermeables del Triásico en la zona SO y pizarras de edad Ordovícico - Silúrico en el Cabo Peñas. Las calizas del Devónico se presentan con espesores 690 - 810 metros. La recarga tiene lugar por infiltración del agua de lluvia fundamentalmente, y en menor cuantía, por la infiltración del agua de escorrentía superficial. La descarga se lleva a cabo, directamente al mar, y en menor proporción por el río Aboño y otros pequeños arroyos que atraviesan la zona.

Puntos de control piezométrico

• Red básica Demarcación: 1 punto (periodo del 16/01/2007 al 25/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 19/06/2006 al 20/02/2008)
- Red IGME: 1 punto (periodo del 30/11/1983 al 20/08/1989)

CARACTERÍSTICAS GENERALES

MASS 012.003 - CANDAS

Ficha 1

	0.0040.00L00000			MAG SPORTS	
Din	ntos	do	COL	tro	1
r u	1103	ue	COL	ILIO	ı

Piezometría

Red básica D	emarca	ción									
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	Inicio medidas	Fin medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
i012003001	275070	4830040	32,00			24	01/2007	03/2009	28,93	30,70	30,49

Calidad

Red básica D	emarcac	ion							Última i	medida	
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
CA01000006	274659	4830255	39,00	sondeo		3	06/2006	02/2008	950,00	10,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:	
CA01000007	271625	4825963	66,00	manantial		3	06/2006	02/2008	580,00	10,40	
Red IGME	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc		
Red IGME Código	<u>X</u> (UTM)	Y(UTM)	Cota (m.s.n.m.)	natada cálcica <u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>			

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.003 - CANDAS

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2	<u></u>	# # #	*	0,05

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* 3	æ
Pérdidas en cauces	8.5	(m)	t = 3
Transferencias laterales	X.	: - 8	3.5
Retornos de riego	9 - .		*:
Recursos Renovables (RREN)	25,94	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	WE.	-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	-	5 0
Manantiales			
Total Restricciones Medioambientales (RMED)	4,26	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 21,68

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,05	21,68	0,00	21,63

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.003 - CANDAS

Ficha 2

Análisis de la tendencia de la serie histórica

No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

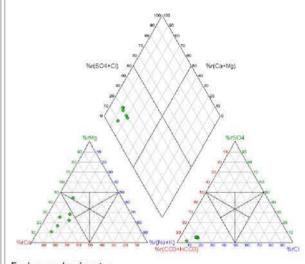
Serie media común

			.)	
Periodo común	Nº valores	Media	Media Mínima	Media Máxima
enero 2007-marzo 2009 (27 meses/2,25 años)	24	30,05	28,93	30,70

Nº de piezómetros considerados: 1 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.003 - CANDAS

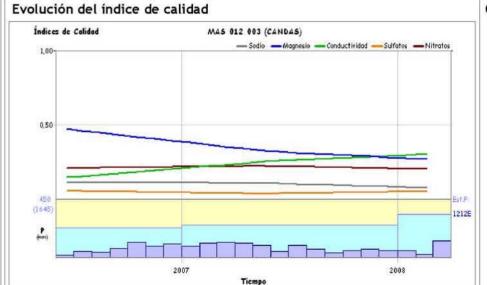

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red	Básica Dei	marcación)	Period	o común	junio	2006-febrero 2008 (21 meses/1,75 a	iños)
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a	20°C)	6	588,67	370,50	765,00	765,00	Q 239,3595 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		6	17,83	13,55	23,70	13,55	O -6,1981 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		6	10,80	10,20	11,25	10,20	-0,1423 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		6	20,80	15,75	22,55	15,75	() -3,8118 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		6	12,01	9,60	14,35	14,05	● -0,5218 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 83,33 % Bicarbonatada cálcica (5 muestra/s)

Valores del Índice de Calidad (Ic)

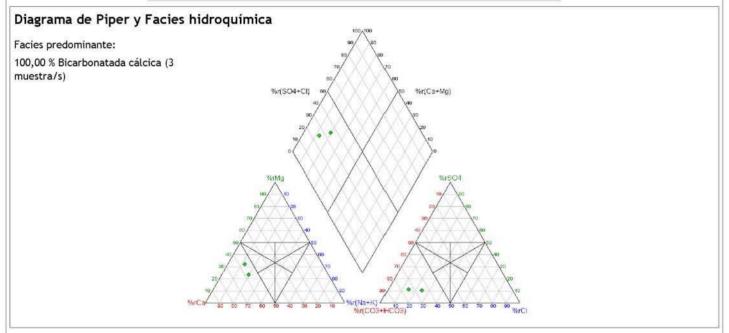
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,31	
Magnesio	0,27	
Nitratos	0,20	
Sodio	0,08	
Sulfatos	0,06	

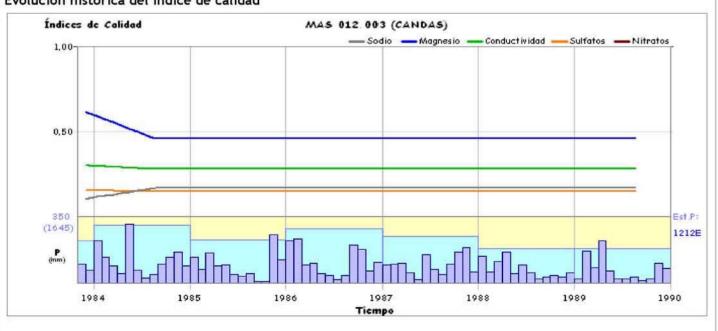
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.003 - CANDAS

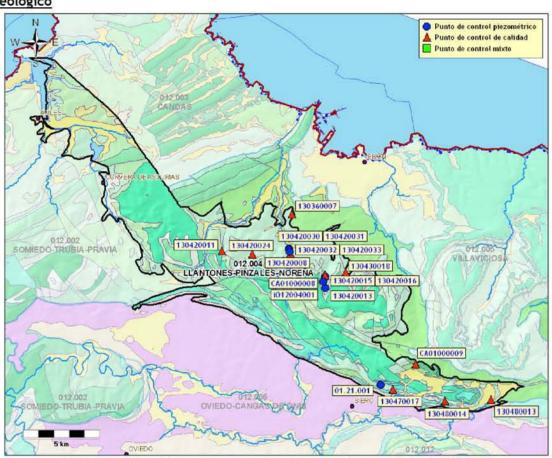
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	1 (Red IG	ME)	Period	o común	novieml	ore 1983-agosto 1989 (70 meses/5,8	33 años)
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20°C)	3	703,63	699,00	760,00	699,00	• -4,3112 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	3	23,61	23,00	31,00	23,00	O -0,5654 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	2	14,00	14,00	14,00	14,00	© 0,0000 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	3	33,01	21,00	34,00	34,00	(0,9188 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	3	37,15	37,00	39,00	37,00	-0,1414 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.004 - LLANTONES-PINZALES-NOREÑA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
172,92 km ²	% Superficie	11,70 %	26,43 %	7,10 %	52,11 %	1,93 %

Características hidrogeológicas:

Esta masa abarca la llamada Franja Móvil Intermedia, una zona de fallas y cabalgamientos, en la que hay materiales cretácicos, jurásicos y triásicos en escamas superpuestas. Hay distintos niveles acuíferos. Por un lado, los acuíferos detríticos y calcáreos del Jurásico (con 160 m de calizas y dolomías con arcillas), y por otra parte los acuíferos detríticos y calcáreos del Cretácico (con unos 100 m de espesor de areniscas, calizas y conglomerados). En el S y E de la masa afloran materiales Cretácicos muy fracturados y plegados, que constituyen acuíferos detríticos arenosos, y otros acuíferos calcáreos con espesores de 100-160 m. La Masa se recarga mediante infiltración de las precipitaciones y desde la red hidrográfica. La descarga se produce a través de manantiales, a los ríos y subterráneamente hacia la masa Oviedo-Cangas de Onís.

Puntos de control piezométrico

- Red básica Demarcación: 2 puntos (periodo del 16/01/2007 al 25/03/2009)
- Red IGME: 6 puntos (periodo del 02/10/1979 al 09/10/1980)

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 15/06/2006 al 19/02/2008)
- Red IGME: 9 puntos (periodo del 08/11/1979 al 24/04/2001)

CARACTERÍSTICAS GENERALES

MASS 012.004 - LLANTONES-PINZALES-NOREÑA

Ficha 1

Puntos de control

Red básica D	emarcad	ión									
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.21.001	286328	4809700	320,00			27	01/2007	03/2009	259,76	265,98	262,57
i012004001	282555	4816500	118,00			27	01/2007	03/2009	108,94	116,82	115,84
Red IGME											
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> <u>medidas</u>	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
130420013	282697	4816066	117,00	sondeo	196	3	04/1980	09/1980	86,81	105,15	86,81
130420015	282704	4816815	99,00	sondeo	35	3	10/1979	09/1980	86,74	96,86	89,05
130420030	280323	4818655	40,00	sondeo		3	04/1980	10/1980	35,01	35,63	35,01
130420031	280333	4818580	40,00	sondeo		3	04/1980	10/1980	35,41	36,20	35,43
130420032	280351	4818455	40,00	sondeo	23,5	3	04/1980	10/1980	35,69	36,43	35,69
130420033	280356	4818454	40,00	sondeo	102,02	3	04/1980	09/1980	35,12	35,90	35,12

Calidad

ed básica D	- Indicac								Última m	nedida	_
Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof.	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	_
CA01000008	282669	4816894	106,00	manantial		3	06/2006	02/2008	620,00	5,70	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	anómalo:	(
CA01000009	288599	4811063	299,00	manantial		3	06/2006	02/2008	390,00	4,30	
Red IGME	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance Última m		(
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	-
130360007	280516	4820918	60,00	manantial		35	07/1981	04/2001	782,00	27,00	
	Fa	acies (prom		Análisis con balance	anómalo:	(
130420008	280380	4818290	50,00	manantial		38	11/1979	04/2001	555,00	10,00	
Facies (promedio): Bicarbonatada cálcica									Análisis con balance	anómalo:	(
130420011	275960	4818500	80,00	manantial		38	11/1979	04/2001	504,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	anómalo:	(
130420016	282640	4816840	100,00	manantial		33	07/1981	04/2001	419,00	6,00	
	Fa	acies (prom	nedio): Bicarbo	natada sulfatada	cálcica				Análisis con balance	anómalo:	
130420024	277930	4818260	70,00	manantial		35	07/1981	04/2001	534,00	29,00	
	Fa	acies (prom	nedio): Bicarboi	natada cálcica					Análisis con balance	anómalo:	(
130430018	284040	4817100	130,00	manantial		36	07/1981	04/2001	458,00	9,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	anómalo:	(
130470017	287130	4809380	260,00	manantial		28	03/1983	04/2001	651,00	21,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcico m	agnésica	Ď			Análisis con balance	anómalo:	(
130480013	293560	4808720	268,00	manantial		35	07/1981	04/2001	744,00	4,00	
	F	ecies (prom	nedio): Sulfatao	la bicarbonatada	cálcica				Análisis con balance	anómalos	(

CARACTERÍSTICAS GENERALES

MASS 012.004 - LLANTONES-PINZALES-NOREÑA

1304	80014 2	90540	4808640	348,00	manantial	28	03/1983	04/2001	360,00	2,00
	10	Fa	cies (prom	edio): Bicarbor	natada cálcica		- According to the control of the co	A¥.	Análisis con balanc	e anómalo:

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.004 - LLANTONES-PINZALES-NOREÑA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)			## 24	-	0,20

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	.
Pérdidas en cauces	8.5.	17 8	\$. 50
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	9 - .		:= 2
Recursos Renovables (RREN)	66,37	Fuente: D.H. Cantábrico (2009)	

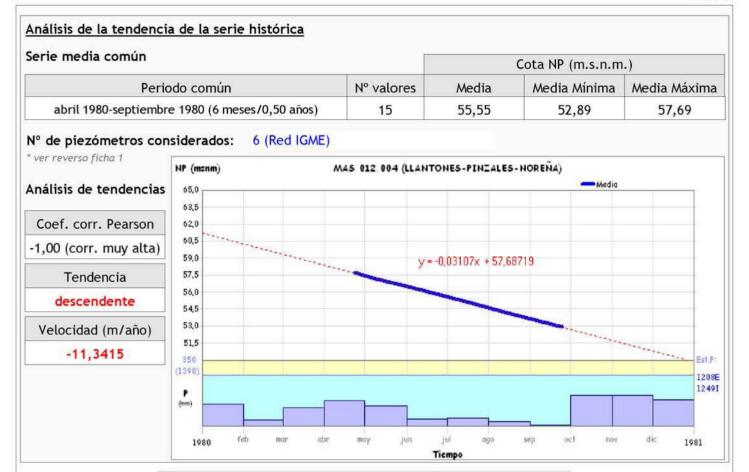
Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	WE.	-	-
Salidas al mar	\$ 2	•	3
Humedales	je:		90
Manantiales			•
Total Restricciones Medioambientales (RMED)	8,65	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 57,72

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,20	57,72	0,00	57,52


Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.004 - LLANTONES-PINZALES-NOREÑA

Ficha 2

Análisis de la tendencia de la serie actual

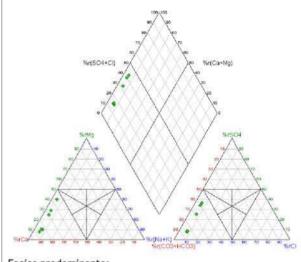
Serie media común

Serie media coman			Cota NP (m.s.n.m	.)
Periodo común	Nº valores	Media	Media Mínima	Media Máxima
enero 2007-marzo 2009 (27 meses/2,25 años)	54	187,79	184,48	191,40

Nº de piezómetros considerados: 2 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.004 - LLANTONES-PINZALES-NOREÑA

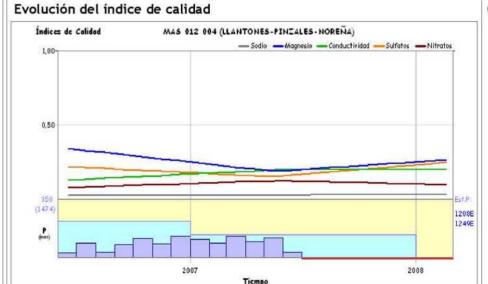

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 2 (R	ed Básica De	marcación)	Period	o común	junio	2006-febrero 2008 (21 meses/1,75 a	iños)
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20°	C) 6	449,16	327,50	505,00	505,00	() 110,2205 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	6	12,55	9,45	17,10	13,25	O -2,6538 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	6	5,31	4,00	6,25	5,00	(0,7062 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	6	5,93	5,85	6,20	6,20	(0,1970 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	6	48,73	38,10	62,35	62,35	() 2,8976 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (6 muestra/s)

Valores del Índice de Calidad (Ic)

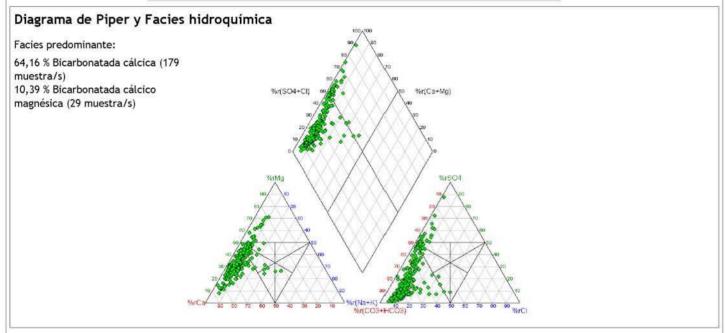
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,20	
Magnesio	0,27	
Nitratos	0,10	
Sodio	0,03	
Sulfatos	0,25	

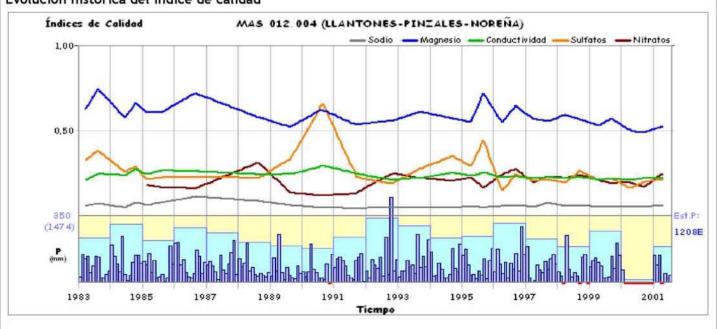
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.004 - LLANTONES-PINZALES-NOREÑA

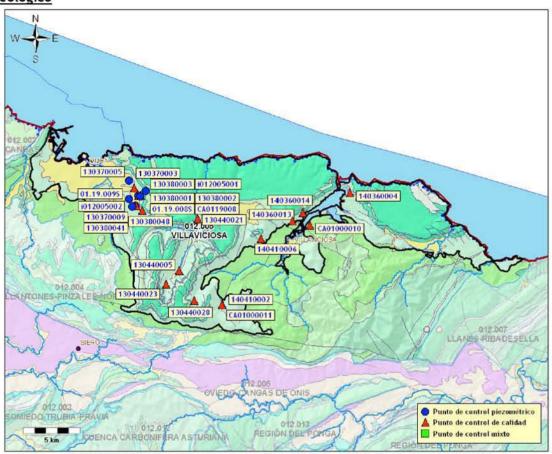
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	9 (Red IG	ME)	Periode	o común	ún marzo 1983-abril 2001 (218 meses/18,17 años)		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20	°C) 254	600,23	526,89	737,82	556,33	• -5,7177 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	246	29,73	24,53	37,33	26,22	● -0,3291 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	206	10,10	5,93	15,67	12,44	0,1051 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	254	12,54	8,80	22,44	11,89	● -0,3550 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	254	68,24	36,82	165,26	53,89	● -1,1110 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.005 - VILLAVICIOSA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
297,64 km ²	% Superficie	11,69 %	32,98 %	-	54,48 %	0,80 %

Características hidrogeológicas:

Hay dos acuíferos de edad jurásica: el acuífero carbonatado del Jurásico inferior, con espesores entre 160 y 280 m y por otra parte, el acuífero detrítico del Jurásico superior (areniscas y conglomerados) con un espesor de 100 m. Entre ambos, se encuentra la "Ritmita Margocaliza de Rodiles y Santa Mera" que actúa como nivel impermeable, independizando ambos acuíferos, con una potencia de 170 m hacia el E, acuñandose hacia el O. El conjunto se encuentra afectado por pliegues y fallas con dirección NO - SE. La recarga se produce por infiltración de lluvia y de algunos ríos (La Vega, Meredal...). El acuífero detrítico superior se drena a través de manantiales y arroyos de poca importancia. El acuífero calcáreo se descarga por el mar Cantábrico (salidas de la playa de San Lorenzo, Punta de Rodiles...), y en parte a los ríos y manantiales.

Puntos de control piezométrico

- Red básica Demarcación: 4 puntos (periodo del 29/01/2002 al 25/03/2009)
- Red IGME: 4 puntos (periodo del 02/06/1977 al 05/05/1981)

Puntos de control hidroquímico

- Red básica Demarcación: 3 puntos (periodo del 13/05/2002 al 19/02/2008)
- Red IGME: 13 puntos (periodo del 27/09/1979 al 26/04/2001)

CARACTERÍSTICAS GENERALES

MASb 012.005 - VILLAVICIOSA

Ficha 1

Puntos de control

ed básica [emarca	ción									
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.19.0085	289929	4821709	47,00			77	01/2002	03/2009	-38,43	40,09	37,05
01.19.0095	288936	4821434	39,00			82	01/2002	03/2009	-48,71	34,76	31,60
i012005001	290425	4822170	70,00			27	01/2007	03/2009	46,42	55,13	49,07
i012005002	289216	4820772	52,00			27	01/2007	03/2009	28,95	41,76	36,45
Red IGME											
Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
130370005	288933	4823067	25,67	sondeo	110	3	06/1977	05/1981	-11,53	1,37	1,37
130370009	289505	4820863	43,00	sondeo	100,5	3	06/1977	09/1979	-40,00	40,47	-40,00
130380001	289735	4821722	42,82	sondeo	100,25	3	06/1977	09/1979	-7,58	32,10	-7,58
130300001						3					

Calidad

ed básica D	emarcac	ion							Última r	nedida	
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	-
CA01000010	304752	4819100	7,00	manantial		3	06/2006	02/2008	610,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	C
CA01000011	297088	4812124	152,00	manantial		3	06/2006	02/2008	570,00	7,50	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	C
CA0119008	289921	4821721	47,00	sondeo		8	05/2002	05/2007	705,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	C
ed IGME									4000		
Código	X	Y	Cota	Naturaleza	Prof.	Análisis	Inicio	Fin	Última r Conductividad	nedida Nitratos	
Codigo	(UTM)	(UTM)	(m.s.n.m.)	Naturateza	(m)	Alidusis	inicio	EIII	(µS/cm)	(mg/l)	
130370003	289377	4822388	36,00	sondeo	74,25	34	05/1981	04/2001	441,00	8,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	(
130380002	289735	4821722	45,34	sondeo	110	39	05/1981	04/2001	402,00	2,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	1		l.		Análisis con balance	e anómalo:	(
130380041	289555	4820824	46,00	sondeo	190,5	24	05/1981	04/2001	432,00	9,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	(
130380048	290080	4820420	60,00	manantial		45	09/1979	04/2001	267,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	(
130440005	293310	4815120	150,00	manantial		39	11/1979	04/2001	310,00	9,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	-				Análisis con balance	e anómalo:	(
130440021	294960	4819670	78,00	manantial		38	06/1981	04/2001	390,00	6,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance	e anómalo:	(
CONTRACTOR	292190	4813910	198,00	manantial		36	04/1981	04/2001	535,00	3,00	
130440023											

CARACTERÍSTICAS GENERALES

MASS 012.005 - VILLAVICIOSA

	3,00	1601,00	04/2001	04/1981	37	manantial	200,00	4812500	294640	130440028
(e anómalo:	Análisis con balanc	<u> </u>		1	a cálcica	nedio): Sulfatad	acies (prom	Fa	
	15,00	509,00	04/2001	03/1980	32	manantial	8,00	4821980	308280	140360004
(e anómalo:	Análisis con balanc	<u> </u>			natada cálcica	nedio): Bicarbor	acies (prom	Fa	
	13,00	958,00	04/2001	03/1980	38	manantial	40,00	4819520	303220	140360013
(e anómalo:	Análisis con balanc	E			a cálcica	nedio): Sulfatad	acies (prom	<u>Fa</u>	
	7,00	502,00	04/2001	03/1980	32	manantial	9,00	4820210	304140	140360014
(e anómalo:	Análisis con balanc	Ā			natada cálcica	nedio): Bicarbor	cies (prom	Fa	
	8,00	353,00	04/2001	02/1980	37	manantial	150,00	4812090	297130	140410002
(e anómalo:	Análisis con balanc	E		-	natada cálcica	nedio): Bicarbor	acies (prom	Fa	
	10,00	448,00	04/2001	04/1981	37	manantial	136,00	4817940	300520	140410006
(e anómalo:	Análisis con baland	E			natada cálcica	nedio): Bicarbor	acies (prom	Fa	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.005 - VILLAVICIOSA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)		** **	20 88	-	18,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	**	.
Pérdidas en cauces	8.5.	(* 8	£#3
Transferencias laterales	5. 5. .	:• š	S#8
Retornos de riego	1.		*:
Recursos Renovables (RREN)	100,86	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>	-	
Salidas al mar	\$ 5 .	•	•
Humedales	je	-	
Manantiales			•
Total Restricciones Medioambientales (RMED)	11,91	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 88,95

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
18,00	88,95	0,20	70,95

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.005 - VILLAVICIOSA

Ficha 2

Análisis de la tendencia de la serie histórica Serie media común Cota NP (m.s.n.m.) Periodo común N° valores Media Minima Media Máxima Media junio 1977-septiembre 1979 (28 meses/2,33 años) 12 5,89 -21,9323,53 Nº de piezómetros considerados: 4 (Red IGME) " ver reverso ficha 1 NP (msnm) MAS 012 005 (VILLAVICIOSA) Análisis de tendencias 31,4 251 Coef. corr. Pearson 18,9 12,7 -0,69 (corr. alta) 6,5 0,2 Tendencia $y = -0.03581 \times + 20.32790$ -6.0 descendente -12,2 -18,4 Velocidad (m/año) -24,7 -13,0719 500 Est P: (1689) 1207E 1978 1979 1077 1020 Tiempo

Análisis de la tendencia de la serie actual

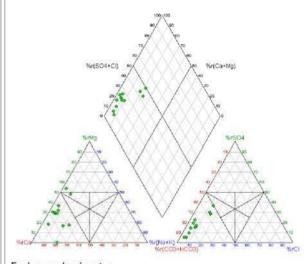
Serie media común

Serie media coman	Cota NP (m.s.n.m.)				
Periodo común	Nº valores	Media	Media Mínima	Media Máxima	
enero 2007-marzo 2009 (27 meses/2,25 años)	98	36,91	34,25	42,94	

Nº de piezómetros considerados: 4 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.005 - VILLAVICIOSA

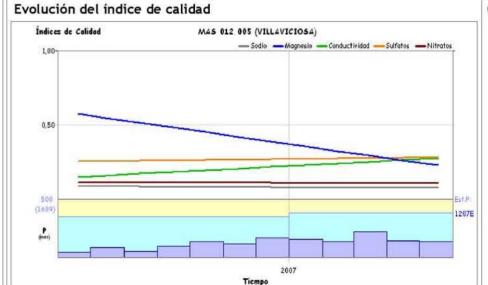

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	3 (Red	Básica De	marcación)	Period	o común	junio 2006-mayo 2007 (12 meses/1,00 años)			
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm	a 20°C)	9	534,39	379,33	695,00	695,00	() 346,1312 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)		9	20,25	11,43	28,80	11,43	O -19,0614 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)		9	5,58	5,47	5,70	5,47	• -0,2557 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)		9	16,40	15,23	17,53	15,23	• -2,5246 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)		9	67,35	63,93	71,00	71,00	7,6808 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 83,33 % Bicarbonatada cálcica (10 muestra/s)

Valores del Índice de Calidad (Ic)

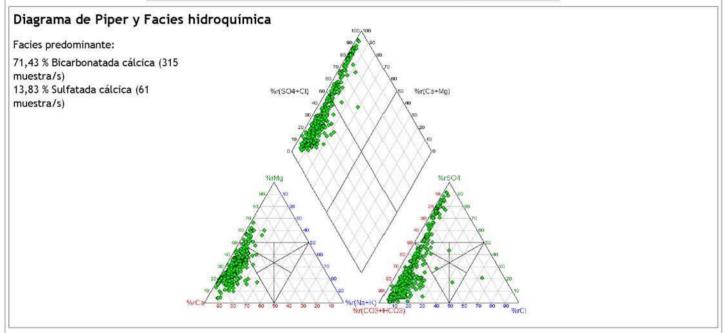
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,28	
Magnesio	0,23	
Nitratos	0,11	
Sodio	0,08	
Sulfatos	0,28	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.005 - VILLAVICIOSA

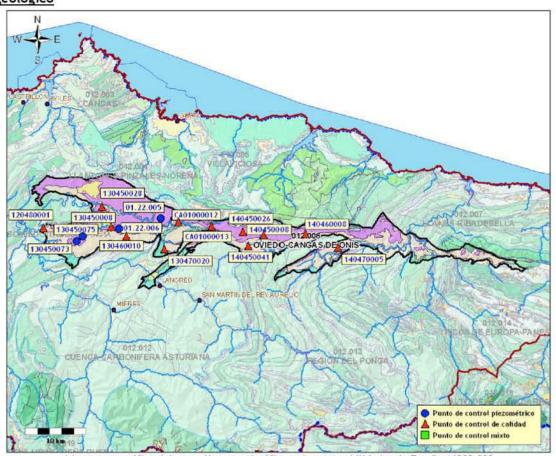
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	13 (Red IG	ME)	Periode	o común	junio 1981-abril 2001 (239 meses/19,92 años		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20)°C) 423	628,44	472,23	743,91	549,85	• -3,1907 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	450	25,46	16,68	45,80	23,54	● -0,4221 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	285	6,87	3,29	13,31	7,46	(0,3572 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	461	9,44	7,38	13,51	11,69	0,1043 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	462	131,69	34,31	241,67	117,00	● -2,8262 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.006 - OVIEDO-CANGAS DE ONIS

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
430,53 km ²	% Superficie	47,15 %	0,50 %	10,04 %	39,63 %	2,45 %

Características hidrogeológicas:

Acuífero multicapa cretácico con importantes cambios de facies. Se pueden distinguir los acuíferos detríticos, constituidos por niveles de arena del Cenomanense, con espesores superiores a los 50 m. También se encuentran las arenas albienses (Utrillas) que pueden alcanzar hasta 130 m de espesor. Por otra parte se distinguen los acuíferos calcáreos, constituidos por tramos carbonatados de hasta 200 m de espesor, con calizas muy fracturadas y carstificadas. También hay materiales impermeables terciarios. Los sedimentos del Cretácico y Terciario, en esta masa, se encuentran como cobertera, sobre el conjunto paleozoico. La recarga se produce por infiltración de lluvia, desde la red hidrográfica y de modo subterráneo desde la masa Llantones-Pinzales-Noreña. La descarga se realiza a través de manantiales y a los ríos Nora, Noreña, Sella.

Puntos de control piezométrico

- Red básica Demarcación: 2 puntos (periodo del 16/01/2007 al 24/03/2009)
- Red IGME: 2 puntos (periodo del 22/04/1980 al 26/09/1980)

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 07/06/2006 al 19/02/2008)
- Red IGME: 10 puntos (periodo del 17/09/1979 al 26/04/2001)

CARACTERÍSTICAS GENERALES

MASS 012.006 - OVIEDO-CANGAS DE ONIS

Ficha 1

Puntos	de	control	
---------------	----	---------	--

Piezometría

Red básica [emarcad	ión									
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.22.005	282568	4808337	220,00			27	01/2007	03/2009	217,49	219,54	217,96
01.22.006	275713	4806611	190,00			27	01/2007	03/2009	178,09	185,70	184,48
Red IGME		,,									·
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
130450073	268788	4804610	251,50	sondeo	57	3	06/1980	09/1980	208,78	209,36	208,78
130450075	269706	4805422	208,00	sondeo	40	3	04/1980	09/1980	194,95	195,16	195,16

Calidad

Cidia	V	V	Cake	KILLULATION	D	A dittata	103022	F/L	Candonski idad	NI/AU-AU-	
<u>Código</u>	(UTM)	(UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	2
CA01000012	285460	4807676	222,00	sondeo		4	06/2006	02/2008	680,00	7,60	
	<u>Fa</u>	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	Y
CA01000013	290901	4807022	239,00	manantial		3	06/2006	02/2008	580,00	10,80	
ed IGME	<u>Fa</u>	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance Última m		D
Código	X (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	7/10/10
120480001	263240	4806720	100,00	manantial		35	07/1981	04/2001	512,00	14,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica			13		Análisis con balance	anómalo:	y)
130450008	274350	4806890	172,00	sondeo	55,1	16	09/1979	04/2001	405,00	0,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	33
130450028	272860	4810180	160,00	sondeo	141,19	35	11/1979	04/2001	365,00	4,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica			N.		Análisis con balance	anómalo:	10
130460010	276870	4805400	210,00	manantial		36	10/1979	04/2001	361,00	4,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	H
130470020	283100	4803210	240,00	manantial		28	06/1981	04/2001	71,00	6,00	
	Fa	acies (prom	edio): Clorurad	da bicarbonatada	sódico r	nagnésica	i		Análisis con balance	anómalo:	ij
140450008	299520	4805530	258,00	manantial		35	02/1980	04/2001	521,00	21,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	Ų
140450026	296070	4806070	275,00	manantial		33	02/1980	04/2001	478,00	19,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	17
140450041	296990	4803750	470,00	manantial		30	07/1981	04/2001	310,00	12,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	()
140460008	306320	4805720	234,00	manantial		27	07/1981	04/2001	367,00	6,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	1
140470005	311600	4803540	190,00	manantial		32	07/1981	04/2001	458,00	30,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.006 - OVIEDO-CANGAS DE ONIS

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2	ii Si	## 24	-	3,26

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	# 0
Pérdidas en cauces	8.5.	17 8	5
Transferencias laterales	X.	•	\$ # \$
Retornos de riego	9 F		18 2
Recursos Renovables (RREN)	146,92	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

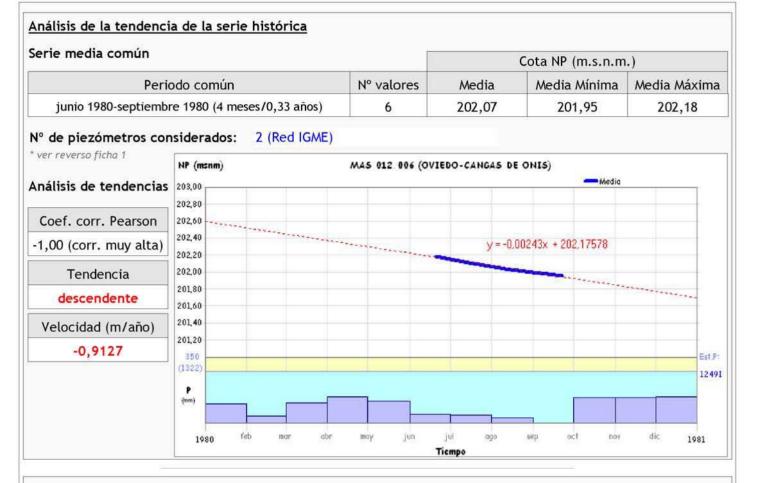
Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	WE.	•	3
Salidas al mar	\$E.	-	
Humedales	je:	#	
Manantiales		•	
Total Restricciones Medioambientales (RMED)	36,80	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 110,12

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
3,26	110,12	0,03	106,86

Clasificación según el Índice de Explotación (le): Disponibilidad


anverso

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.006 - OVIEDO-CANGAS DE ONIS

Ficha 2

Análisis de la tendencia de la serie actual

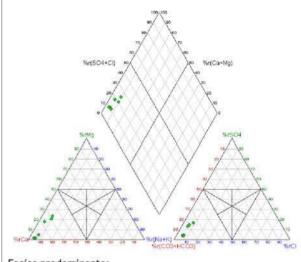
Serie media común

Serie media comun		Cota NP (m.s.n.m.)			
Periodo común	Nº valores	Media	Media Mínima	Media Máxima	
enero 2007-marzo 2009 (27 meses/2,25 años)	54	200,18	197,98	202,43	

Nº de piezómetros considerados: 2 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.006 - OVIEDO-CANGAS DE ONIS

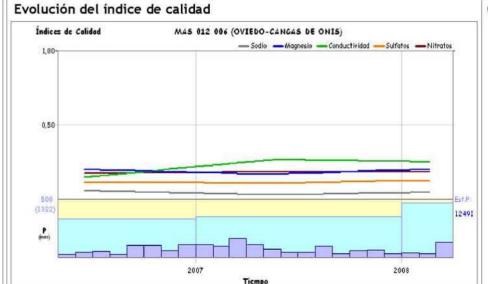

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red	Básica De	marcación)	Period	o común	junio 2006-febrero 2008 (21 meses/1,75 años)		
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	6	575,77	374,50	670,00	630,00	() 161,8145 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		6	9,37	8,45	10,30	10,30	-0,0194 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		6	9,12	8,75	9,30	9,20	(0,2850 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		6	8,54	6,15	11,75	9,50	(-1,6021 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		6	28,89	27,15	32,20	32,20	1,6321 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (6 muestra/s)

Valores del Índice de Calidad (Ic)

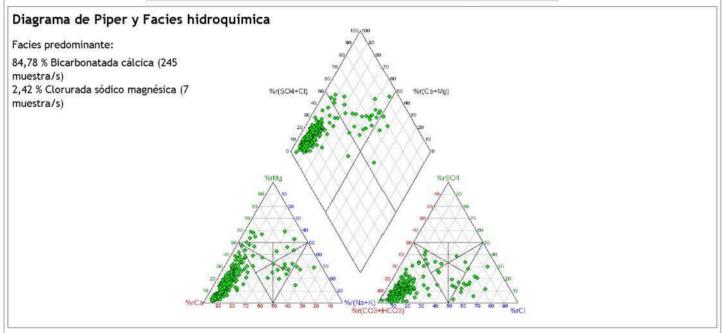
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,25	
Magnesio	0,21	
Nitratos	0,18	
Sodio	0,05	
Sulfatos	0,13	

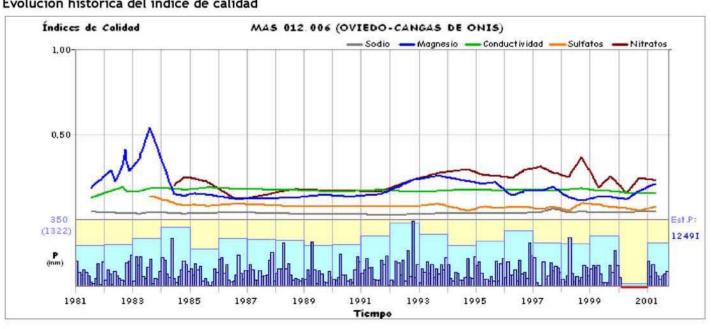
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.006 - OVIEDO-CANGAS DE ONIS

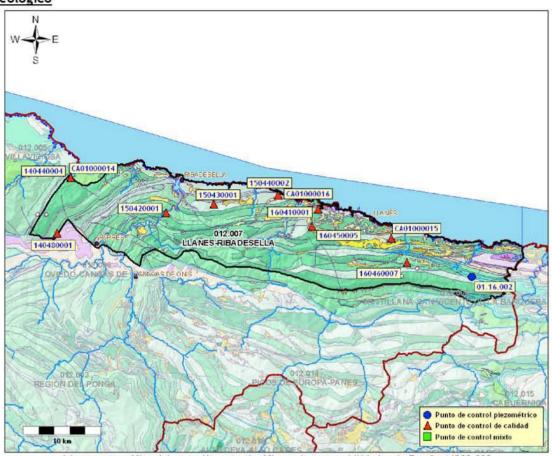
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	10 (Red IC	ME)	Period	Periodo común julio 1981-abril 2001 (238 meses/19,83 año			años)
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20°C) 307	430,47	323,54	485,64	384,80	• -0,9908 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	298	9,33	5,60	27,19	10,50	● -0,2246 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	237	11,04	5,83	18,50	11,60	(0,3285 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	307	7,73	5,67	13,46	9,20	0,0589 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	253	19,88	12,67	35,36	18,90	● -0,4080 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.007 - LLANES-RIBADESELLA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
549,85 km ²	% Superficie	20,13 %	4,54 %	38,39 %	24,71 %	11,81 %

Características hidrogeológicas:

Hay varios acuíferos separados por cuarcitas y pizarras del Cámbrico-Ordovícico: El acuífero del Sueve, una banda continua de caliza de montaña de 1000 m de espesor. Los acuíferos de Ribadesella y Monfrechu, separados entre sí por pizarras carboníferas, con estructura de escamas verticales. Los acuíferos costeros de Llanes, se sitúan en la Caliza de Montaña y las calizas de la Formación Picos de Europa, también con estructura de escamas con espesores superiores a 500 m. Los acuíferos de la sierra de Cuera, con espesores de hasta 1500 m en caliza de montaña y en materiales cretácicos y terciarios. La recarga se produce a partir de la infiltración directa del agua de la lluvia. La descarga se produce a través de manantiales (Monfrechu y de Sueve, Sª del Cuera), al mar (Ribadesella y Llanes) y al río Bedón (Llanes).

Puntos de control piezométrico

Red básica Demarcación: 1 punto (periodo del 29/01/2002 al 24/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 3 puntos (periodo del 20/06/2006 al 19/02/2008)
- Red IGME: 8 puntos (periodo del 20/08/1979 al 11/05/2001)

CARACTERÍSTICAS GENERALES

MASb 012.007 - LLANES-RIBADESELLA

Ficha 1

iezometría												
Red básica D	emarcac	ión										
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Últi</u>	A Transfer out
01.16.002	371190	4801858	168,00			86	01/2002	03/2009	160,21	162,90	162	,08
alidad												
Red básica D	emarcad	ión							Úli	tima medida	ř	
<u>Código</u>	X (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	Fin	Conductivid (µS/cm)		itrato: (mg/l)	-
CA01000014	319283	4814694	47,00	manantial		2	05/2007	02/2008	285,00		5,90	
	E.	acies (pron	nedio): Bicarbo	natada cálcica					<u>Análisis con b</u>	alance anón	nalo:	C
CA01000015	360691	4806842	39,00	manantial		3	06/2006	02/2008	560,00		9,80	
	<u>F</u>	acies (prom	nedio): Bicarbo	natada cálcica					<u>Análisis con b</u>	alance anón	nalo:	(
CA01000016	346131	4812414	14,00	manantial		3	06/2006	02/2008	550,00		9,40	
Red IGME Código	<u>X</u>	<u>Y</u>	Cota	<u>Naturaleza</u>	Prof.	Análisis	Inicio	Fin	Úl	tima medida ad <u>N</u>	litratos	S
	(UTM)	(UTM)	(m.s.n.m.)		<u>(m)</u>				(µS/cm)	11-2	(mg/l)	
140440004	319270	4814750	40,00	manantial		21	02/1980	04/2001	239,00		4,00	
	<u> </u>	acies (pron	nedio): Bicarbo	natada cálcica	4)				Análisis con b	alance anón	nalo:	(
140480001	317565	4807450	300,00	manantial		37	02/1980	04/2001	81,00		4,00	
	<u> </u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con b	alance anón	nalo:	(
150420001	331631	4810157	25,00	manantial		21	08/1979	05/2001	263,00		3,00	
	<u>F</u>	acies (pron	nedio): Bicarbo	natada cálcica					<u>Análisis con b</u>	alance anón	nalo:	(
150430001	337813	4811290	85,00	manantial		26	08/1979	05/2001	253,00		2,00	
	<u>F</u>	acies (prom	nedio): Bicarbo	natada cálcica	1.7		n'		Análisis con b	alance anón	nalo:	(
150440002	346135	4812348	20,00	manantial		28	08/1979	05/2001	361,00		8,00	
	<u>F</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con b	alance anón	nalo:	(
160410001	351239	4810613	20,00	manantial		22	09/1979	05/2001	388,00		9,00	
	(/35	! /	nedio): Bicarbo	natada cálcica	_				Análisis con b	alance anón	nalo:	(
	<u>F</u>	acies (pron										
160450005	350440		Maria Cara Managara Caraca	manantial		22	09/1979	05/2001	200,00		2,00	
160450005	350440	4808350	Maria Cara Managara Caraca	manantial		22	09/1979	05/2001	200,00 Análisis con b	alance anón	1222000	(
160450005	350440	4808350	50,00 nedio): Bicarbo	manantial		22	09/1979	05/2001	Espectario	alance anón	1222000	C

Facies (promedio): Bicarbonatada cálcica

Análisis con balance anómalo:

CARACTERÍSTICAS VOLUMÉTRICAS

MASb 012.007 - LLANES-RIBADESELLA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	** **		*	0,12

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	# 1
Pérdidas en cauces	8.5.	1 7 3	5
Transferencias laterales	X.	·**	\$ # .8
Retornos de riego	8 =	**	:
Recursos Renovables (RREN)	170,30	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	WE.	•	<u> </u>
Salidas al mar	\$ 2	-	3
Humedales	je:	-	31
Manantiales		•	•.
Total Restricciones Medioambientales (RMED)	37,41	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 132,89

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,12	132,89	0,00	132,77

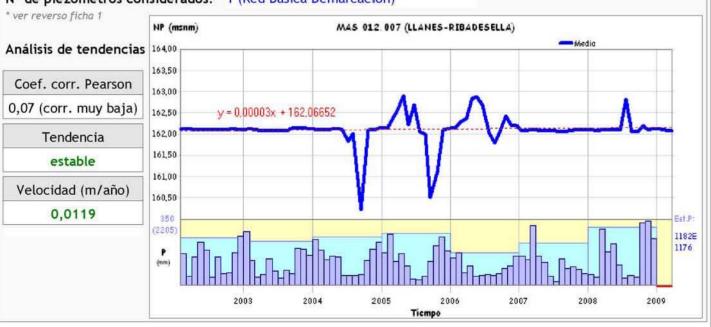
Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.007 - LLANES-RIBADESELLA

Ficha 2

Análisis de la tendencia de la serie histórica


No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

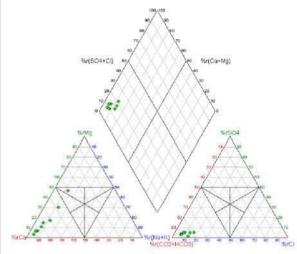
Serie media común

		Cota NP (m.s.n.m.)				
Periodo común	Nº valores	Media	Media Mínima	Media Máxima		
enero 2002-marzo 2009 (87 meses/7,25 años)	86	162,11	160,21	162,90		

Nº de piezómetros considerados: 1 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 012.007 - LLANES-RIBADESELLA

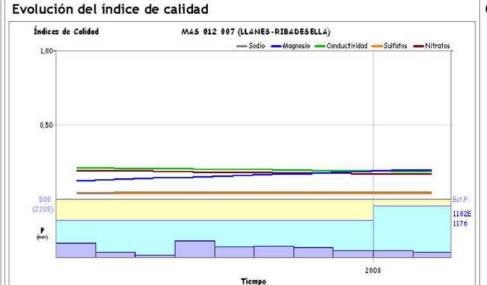

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	3 (Red	Básica De	marcación)	Periodo común		mayo 2007-febrero 2008 (10 meses/0,83 años)			
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm	a 20°C)	8	500,16	465,00	535,00	465,00	• -93,3758 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)		8	8,20	6,30	10,10	10,10	€ 5,0775 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)		8	9,05	8,37	9,73	8,37	() -1,8313 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)		8	9,36	8,93	9,80	9,80	1,1544 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)		8	9,65	9,30	10,00	9,30	● -0,9360 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 87,50 % Bicarbonatada cálcica (7 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,19	
Magnesio	0,20	
Nitratos	0,17	
Sodio	0,05	
Sulfatos	0,04	

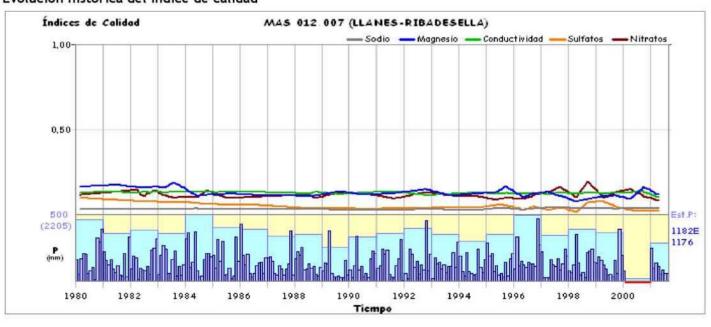
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.007 - LLANES-RIBADESELLA

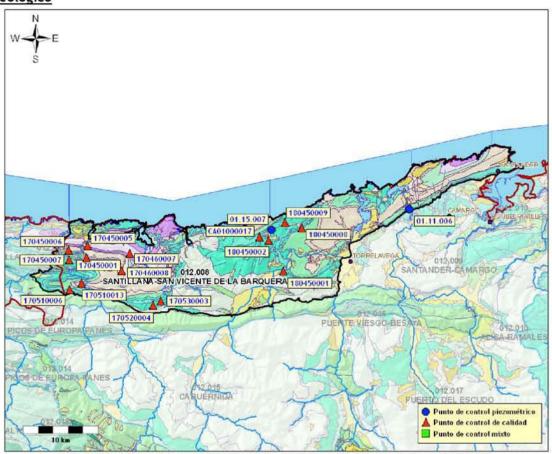
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	8 (Red IGME)		Periodo común		febrero 1980-abril 2001 (255 meses/21,25 años)			
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a 20°C)	197	321,42	253,93	351,81	253,93	O -1,0094 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)	189	6,49	4,00	9,47	5,94	-0,1052 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	190	5,90	4,16	9,75	4,16	© 0,0072 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	197	6,53	5,38	9,13	7,40	0,0507 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	194	12,82	4,13	24,74	5,58	● -0,5602 (mg/l SO4/año)	250,00	

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 hase cartográfica del mapa litoestratigráfico y de permeabilidades de España

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA, ASTURIAS

Provincia/s: CANTABRIA, ASTURIAS

Superficie: 555,00 km²	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
555,00 km ²	% Superficie	29,08 %	8,96 %	14,51 %	29,74 %	16,38 %

Características hidrogeológicas:

Al E de la masa existe un sinclinorio de materiales carbonatados de edad Cretácico terminal-Terciario (acuífero de San Román), con un espesor de 450 m, de carácter libre e inclinado hacia la costa, facilitando el flujo hacia la misma. En la parte central de la masa afloran sedimentos cretácicos, plegados y fallados, que configuran un acuífero multicapa (Acuífero de Comillas) de hasta 1000 m de espesor. Más hacia el O hay alternancias en pliegues de dirección E - O. Las calizas cretácicas se encuentran separadas por tramos detríticos que independizan los acuíferos entre sí. La recarga se produce por infiltración de agua de lluvia y a través de los ríos y arroyos. La descarga se realiza a través de manantiales, por algunos ríos que los atraviesan (Besaya, Saja y Deva principalmente) y posiblemente hacia el mar (acuífero de San Román).

Puntos de control piezométrico

Red básica Demarcación: 2 puntos (periodo del 18/12/2001 al 24/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 1 punto (periodo del 21/06/2006 al 13/02/2008)
- Red IGME: 14 puntos (periodo del 24/08/1983 al 18/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

Ficha 1

Puntos de control

Piezometría

ed básica Demarcación											
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.11.006	423244	4807555	12,00			82	02/2002	03/2009	5,14	9,56	9,50
01.15.007	404828	4804783	53,00			87	12/2001	03/2009	31,69	49,51	46,64

Calidad

ed básica D	ciriarcac	1011							Última med	dida	
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	_
CA01000017	403145	4803781	44,00	manantial		3	06/2006	02/2008	370,00	6,40	
Red IGME	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a Última med		
<u>Código</u>	X (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	-
170450001	379976	4801008	80,00	manantial		25	08/1983	05/2001	486,00	16,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	1
170450005	380117	4802641	15,00	manantial		23	08/1983	05/2001	483,00	17,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	(
170450006	377518	4802063	40,00	manantial		20	08/1983	05/2001	451,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	(
170450007	377585	4800767	120,00	manantial		22	08/1983	05/2001	428,00	6,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	+		_		Análisis con balance a	nómalo:	7
170460007	385751	4801631	120,00	manantial		24	08/1983	05/2001	471,00	17,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	10
170460008	384698	4799272	130,00	manantial		24	08/1983	05/2001	369,00	5,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	1				Análisis con balance a	nómalo:) j
170510006	377710	4796731	155,00	manantial		25	08/1983	05/2001	364,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	
170510013	379316	4797621	140,00	manantial		19	08/1983	05/2001	528,00	6,00	
	Fa	acies (prom	nedio): Bicarboi	natada cálcica			14	17	Análisis con balance a	nómalo:	- 1
170520004	388883	4794621	200,00	manantial		24	08/1983	05/2001	259,00	2,00	
	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	1
170530003	389888	4795214	130,00	manantial		23	08/1983	05/2001	375,00	2,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	10
180450001	406297	4799189	100,00	manantial		26	08/1983	05/2001	270,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica			100		Análisis con balance a	nómalo:	Ą
180450002	404351	4803348	80,00	manantial		25	08/1983	05/2001	339,00	7,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica			1		Análisis con balance a	nómalo:	y)
180450008	408758	4805051	70,00	manantial		22	08/1983	05/2001	383,00	10,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balance a	nómalo:	()
180450009	406516	4805766	35,00	manantial		25	08/1983	05/2001	500,00	13,00	
	12		nedio): Bicarboi						Análisis con balance a	PRINCE AND LO	10

CARACTERÍSTICAS VOLUMÉTRICAS MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	** 53	# <u>G</u>	2	1,91

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente		
Infiltración	2.	•	課法		
Pérdidas en cauces	8.5.	•6			
Transferencias laterales	X.		3#.8		
Retornos de riego	9.00		**		
Recursos Renovables (RREN)	149,17	Fuente: D.H. Cantábrico (2009)			

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente		
Caudal ecológico	WE.	-	2)		
Salidas al mar	\$ 2	-	3		
Humedales	je:	•	31		
Manantiales		•	·.		
Total Restricciones Medioambientales (RMED)	44,40	Fuente: D.H. Cantábrico (2009)			

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 104,77

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
1,91	104,77	0,02	102,86

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

Ficha 2

Análisis de la tendencia de la serie histórica

No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

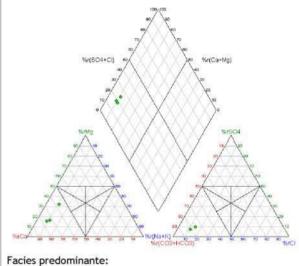
Serie media común

Serie media coman		Cota NP (m.s.n.m.)				
Periodo común	N° valores	Media	Media Mínima	Media Máxima		
febrero 2002-marzo 2009 (86 meses/7,17 años)	168	25,46	19,45	29,06		

Nº de piezómetros considerados: 2 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

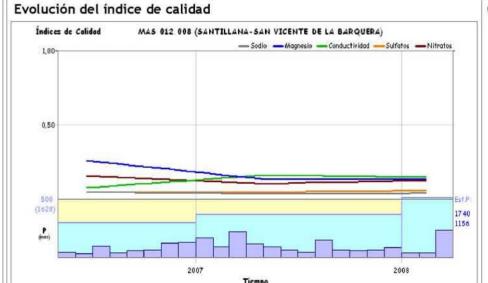

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	1 (Red	Básica De	marcación)	Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)			
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm	a 20°C)	3	340,18	198,00	410,00	370,00	() 109,0807 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)		3	8,51	6,70	13,10	6,70	() -3,9996 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)		3	6,33	5,30	8,00	6,40	• -1,0437 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)		3	8,26	7,60	9,60	8,00	(-1,0158 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4) 3		3	12,51	11,90	14,40	14,40	1,4629 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


100,00 % Bicarbonatada cálcica (3 muestra/s)

Valores del Índice de Calidad (Ic)

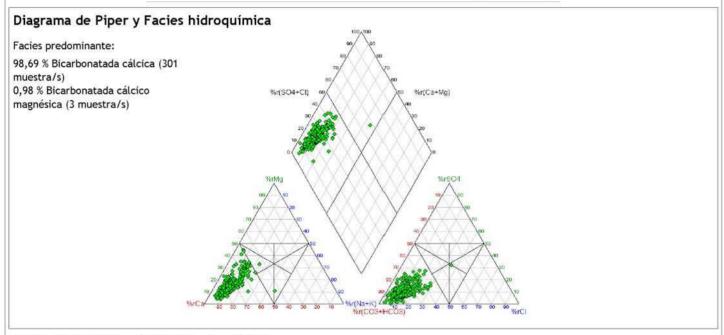
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,15	
Magnesio	0,13	
Nitratos	0,13	
Sodio	0,04	
Sulfatos	0,06	

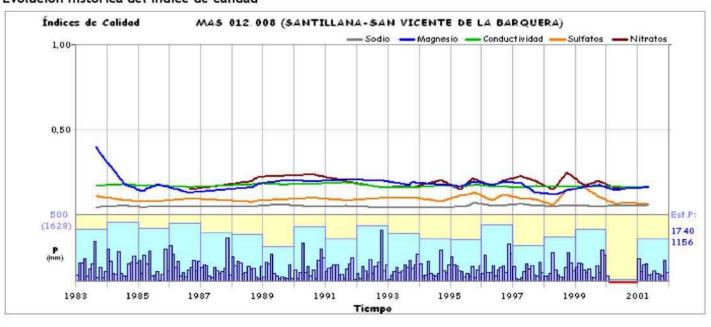
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.008 - SANTILLANA-SAN VICENTE DE LA BARQUERA

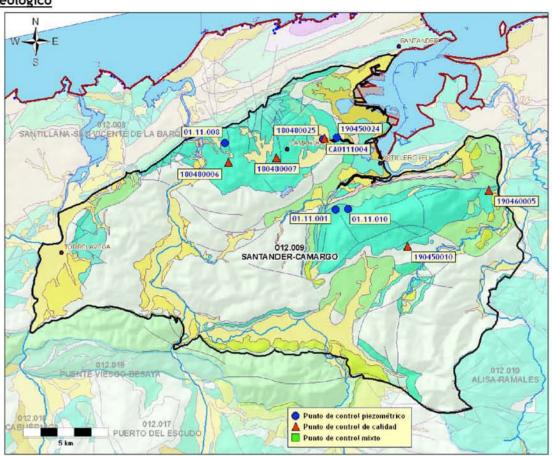
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	14 (Red IC	14 (Red IGME)		Periodo común		agosto 1983-mayo 2001 (214 meses/17,83 años)			
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a 20°C	326	424,32	395,57	473,37	407,57	• -1,6719 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)	316	8,88	5,86	19,86	7,93	-0,1268 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)	279	9,47	7,36	12,27	8,07	-0,0550 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)	327	9,92	7,97	14,26	11,21	0,0603 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)	327	23,27	14,00	40,19	14,71	(0,1886 (mg/l SO4/año)	250,00		

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.009 - SANTANDER-CAMARGO

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA

Provincia/s: CANTABRIA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
333,57 km ²	% Superficie	28,30 %	6,31 %	3,27 %	51,33 %	10,67 %

Características hidrogeológicas:

Esta masa integra un conjunto de materiales permeables e impermeables, plegados y fallados en los que se incluyen dos acuíferos calcáreos principales, independientes entre sí: por un lado, las calizas con rudistas y dolomías del Aptiense (fm. Reocín), que presenta una potencia de 250 m y por otro lado, las calizas con rudistas de la Formación Ramales de edad Aptiense-Albiense, con una mayor potencia (650 m). Estos materiales están fracturados y karstificados. Funcionan generalmente como libres y, ocasionalmente, como confinados. También ocupando una gran extensión, la Facies Purbeck - Weald (lutitas rojas, areniscas y conglomerados) y las arcillas y yesos del Keuper. La recarga se produce por infiltración de agua de lluvia y de algunos tramos de río. Se descarga por manantiales y por los ríos que la atraviesan (Besaya, Pas, Pisueña).

Puntos de control piezométrico

- Red básica Demarcación: 3 puntos (periodo del 28/12/2001 al 23/03/2009)
- Red IGME: 2 puntos (periodo del 11/05/1988 al 27/12/1989)

Puntos de control hidroquímico

- Red básica Demarcación: 1 punto (periodo del 06/05/2002 al 21/06/2006)
- Red IGME: 4 puntos (periodo del 23/04/1983 al 17/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.009 - SANTANDER-CAMARGO

Ficha 1

Puntos de control

ed básica [emarcad	ción									
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.11.001	431344	4803128	26,00			70	12/2001	03/2009	4,70	22,19	21,18
01.11.008	424850	4807060	59,00			27	01/2007	03/2009	29,65	46,64	33,98
01.11.010	432054	4803177	53,00			27	01/2007	03/2009	24,96	46,54	38,62
Red IGME											
Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP minima	Cota NP máxima	<u>Última</u> medida
180480025	430607	4807276	4,00	sondeo	104	2	09/1988	09/1989	2,40	2,55	2,40
190450024	431407	4807370	5,00	sondeo de pequeño diámetro, piezómetro	346,3	2	05/1988	12/1989	1,43	3,10	1,43

Calidad

ed básica D	ciliarcae								Última m	nedida
<u>Código</u>	<u>X</u> (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)
CA0111004	430676	4807315	7,00	sondeo	95	7	05/2002	06/2006	668,00	13,10
	Fa	acies (prom	nedio): Bicarbor	natada cálcico só	dica				Análisis con balance	anómalo:
ed IGME									Última m	nedida
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)
180480006	425051	4805916	45,00	manantial		26	08/1983	05/2001	411,00	19,00
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:
180480007	427850	4806146	70,00	manantial		26	08/1983	05/2001	539,00	17,00
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:
190450010	435550	4800983	100,00	manantial		26	04/1983	05/2001	386,00	3,00
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:
190460005	440323	4804266	50,00	manantial		22	08/1983	05/2001	785,00	4,00

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.009 - SANTANDER-CAMARGO

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	8	** **	# <u>#</u>		7,49

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	æ
Pérdidas en cauces	8.5.	1 7 3	5 . 3
Transferencias laterales	1.e.	·•	3.5
Retornos de riego	9 - .		*:
Recursos Renovables (RREN)	105,10	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	12	-	3
Salidas al mar	95	-	
Humedales	(#	88	5 8
Manantiales	-	•	.
Total Restricciones Medioambientales (RMED)	28,43	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 76,67

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
7,49	76,67	0,10	69,18

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.009 - SANTANDER-CAMARGO

Ficha 2

Análisis de la tendencia de la serie histórica Serie media común Cota NP (m.s.n.m.) Periodo común Media Minima Media Máxima N° valores Media septiembre 1988-agosto 1989 (12 meses/1,00 años) 2,38 2,11 2,65 4 Nº de piezómetros considerados: 2 (Red IGME) " ver reverso ficha 1 NP (msnm) MAS 012 009 (SANTANDER-CAMARGO) -Media Análisis de tendencias 5,00 450 Coef. corr. Pearson 4,00 3.50 -1,00 (corr. muy alta) y = -0.00167x + 2.635273,00 2,50 Tendencia 2.00 descendente 1,50 1,00 Velocidad (m/año) 0,50 -0,5919350 Est P: (1701) 11130 1109 1020 1990 1022 Tiempo

Análisis de la tendencia de la serie actual

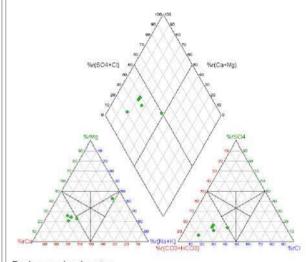
Serie media común

Serie media común		Cota NP (m.s.n.m.)			
Periodo común	Nº valores	Media	Media Minima	Media Máxima	
enero 2007-marzo 2009 (27 meses/2,25 años)	82	28,31	23,30	37,71	

Nº de piezómetros considerados: 3 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.009 - SANTANDER-CAMARGO

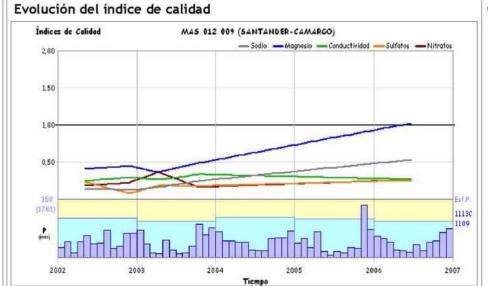

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	1 (Red	Básica De	marcación)	Period	Periodo común		nayo 2002-junio 2006 (50 meses/4,17 años)				
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite			
Conductividad (µS/cm a	a 20°C)	5	739,33	629,00	842,00	668,00	🔾 -0,0315 (μS/cm a 20°C/año)	2500,00			
Magnesio (mg/l Mg)	Magnesio (mg/l Mg)		32,17	18,30	51,40	51,40	(8,3012 (mg/l Mg/año)	50,00			
Nitratos (mg/l NO3)		5	11,33	8,23	18,33	13,10	0,0152 (mg/l NO3/año)	50,00			
Sodio (mg/l Na)		5	62,35	25,00	106,90	106,90	(21,5791 (mg/l Na/año)	200,00			
Sulfatos (mg/l SO4)		5	49,37	20,30	63,80	63,80	€ 6,5480 (mg/l SO4/año)	250,00			

Diagrama de Piper y Facies hidroquímica


Facies predominante: 80,00 % Bicarbonatada cálcica (4 muestra/s)

Valores del Índice de Calidad (Ic)

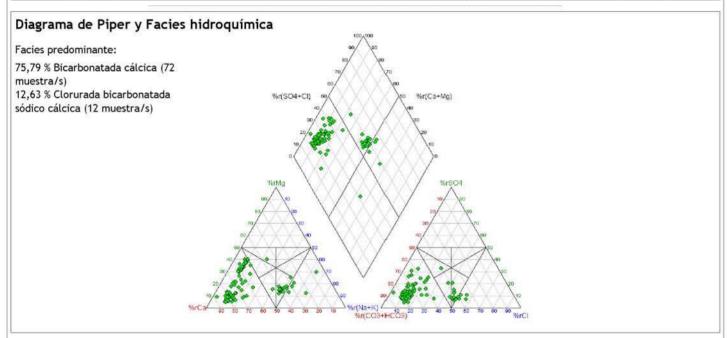
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,27	
Magnesio	1,03	
Nitratos	0,26	
Sodio	0,53	
Sulfatos	0,26	

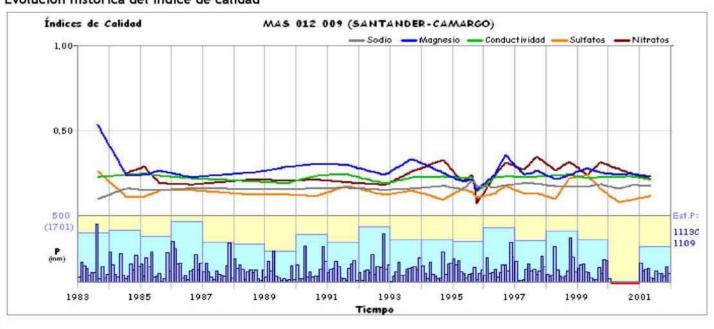
Clasificación según el Índice de Calidad (Ic): Malo (peor valor Ic Magnesio = 1,03)

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.009 - SANTANDER-CAMARGO

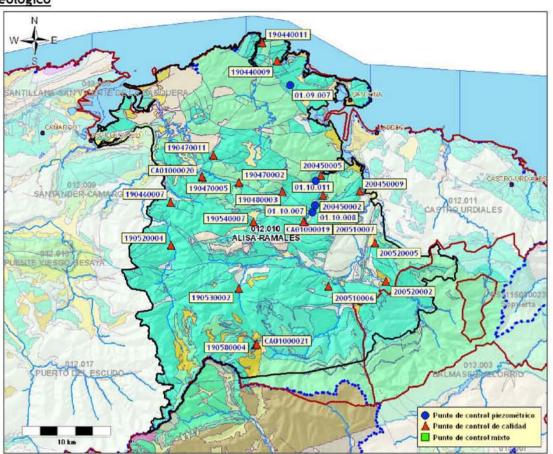
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	4 (Red IG	ME)	Period	Periodo común		agosto 1983-mayo 2001 (214 meses/17,83 a			
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a 20)°C) 100	552,44	355,33	613,75	530,25	© 0,0714 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)	96	13,31	7,59	26,82	11,50	-0,1404 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)	97	11,73	3,65	17,50	10,75	(0,2507 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)	100	32,45	20,00	40,63	35,25	(0,4141 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)	100	34,76	19,75	65,67	29,25	-0,1203 (mg/l SO4/año)	250,00		

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.010 - ALISA-RAMALES

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA, PAÍS VASCO

Provincia/s: CANTABRIA, VIZCAYA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
962,17 km ²	% Superficie	51,67 %	1,20 %	9,70 %	31,90 %	5,43 %

Características hidrogeológicas:

Esta masa está constituida principalmente por materiales carbonatados cretácicos (calizas, calizas bioclásticas y calizas arenosas) que constituyen el acuífero más importante, con espesores entre 800 y 2000m. Las calizas están muy fisuradas y karstificadas. En el SE de la unidad existen pequeños aflorarmientos del Jurásico (calizas y dolomías) compartimentados por grandes fallas, con menores espesores (150 m), lo que hace que tengan una menor importancia hidrogeológica. Además afloran materiales de permeabilidad baja como las margas y calizas arcillosas de edad Aptiense-Albiense, y las areniscas y lutitas negras de la fm. Valmaseda (Cenomaniense). En conjunto esta unidad se encuentra muy tectonizada. La recarga se lleva a cabo por infiltración del agua de lluvia. La descarga se produce a través de manantiales y de los ríos Miera y Asón.

Puntos de control piezométrico

Red básica Demarcación: 4 puntos (periodo del 31/01/2001 al 23/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 3 puntos (periodo del 22/06/2006 al 11/02/2008)
- Red IGME: 18 puntos (periodo del 22/08/1983 al 16/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.010 - ALISA-RAMALES

Ficha 1

Última medida

Puntos de control

Piezometría

Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.09.007	456539	4812166	36,00			87	12/2001	03/2009	34,50	35,68	34,62
01.10.007	459382	4798529	43,00			85	12/2001	03/2009	38,30	40,03	38,73
01.10.008	459050	4797677	45,00			95	01/2001	03/2009	34,44	40,69	37,98
01.10.011	459452	4801251	16,00			86	12/2001	03/2009	6,13	10,73	8,11

Calidad

Red básica Demarcación

<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof.	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	5
CA01000019	458019	4796619	55,00	manantial		3	06/2006	02/2008	330,00	2,70	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica			N.	Pi	Análisis con balanc	e anómalo:	0
CA01000020	446602	4801764	59,00	manantial		3	06/2006	02/2008	315,00	6,30	
	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	C
CA01000021	452799	4782733	575,00	manantial		3	06/2006	02/2008	270,00	2,00	
ed IGME	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica	il.			**	Análisis con balanc Última	Urowits.	C
<u>Código</u>	X_ (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	-
190440009	455066	4814865	10,00	manantial		25	08/1983	05/2001	577,00	2,00	
	Fa	acies (prom	nedio): Clorura	da sódica					Análisis con balanc	e anómalo:	(
190440011	453415	4816931	1,00	manantial		20	08/1983	05/2001	540,00	16,00	
	Fa	acies (prom	nedio): Bicarbo	natada clorurada	cálcico	sódica			Análisis con balanc	e anómalo:	(
190460007	443026	4798826	100,00	manantial		26	08/1983	05/2001	264,00	3,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	-				Análisis con balanc	e anómalo:	(
190470002	450738	4801095	100,00	manantial		24	08/1983	05/2001	296,00	12,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	(
190470005	446646	4801650	60,00	manantial		25	08/1983	05/2001	242,00	6,00	
	<u>Fa</u>	acies (prom	nedio): Bicarboi	natada cálcica					Análisis con balanc	e anómalo:	- (
190470011	447865	4804164	100,00	manantial		24	08/1983	05/2001	312,00	14,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	(
190480003	455650	4800026	100,00	manantial		25	08/1983	05/2001	359,00	11,00	
	<u>Fa</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	(
190520004	443036	4793980	160,00	manantial		26	08/1983	05/2001	199,00	2,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica	-				Análisis con balanc	e anómalo:	(
190530002	450789	4789030	220,00	manantial		25	08/1983	05/2001	183,00	1,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica			1.		Análisis con balanc	e anómalo:	
190540007	452399	4796576	160,00	manantial		25	08/1983	05/2001	243,00	4,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	(
190580004	452635	4782586	600,00	manantial		25	08/1983	05/2001	186,00	1,00	
	Fa	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con balanc	e anómalo:	(

CARACTERÍSTICAS GENERALES

MASS 012.010 - ALISA-RAMALES

	7,00	393,00	05/2001	08/1983	24	manantial	40,00	4799584	460217	200450002		
Ų	e anómalo:	Análisis con balanc		the state of the s	-	natada cálcica	edio): Bicarbo	cies (prom	Fa			
	8,00	383,00	05/2001	08/1983	25	manantial	10,00	4801883	459986	200450005		
10	Facies (promedio): Bicarbonatada cálcica Análisis con balance anómalo:											
	2,00	260,00	05/2001	08/1983	25	manantial	300,00	4800087	464442	200450009		
10	Facies (promedio): Bicarbonatada cálcica Análisis con balance anómalo:											
	3,00	240,00	05/2001	08/1983	25	manantial	80,00	4789290	460833	200510006		
0	Facies (promedio): Bicarbonatada cálcica Análisis con balance anómalo:											
	4,00	279,00	05/2001	08/1983	25	manantial	60,00	4796597	458144	200510007		
H	e anómalo:	Análisis con balanc				natada cálcica	edio): Bicarbor	cies (prom	Fa			
	4,00	298,00	05/2001	08/1983	25	manantial	160,00	4789823	467382	200520002		
(e anómalo:	Análisis con balanc		· ·		natada cálcica	edio): Bicarbor	cies (prom	Fa			
	4,00	250,00	05/2001	08/1983	25	manantial	100,00	4794204	466168	200520005		
V	re anómalo:	Análisis con balanc				natada cálcica	edio): Bicarbor	cies (prom	Fa			

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.010 - ALISA-RAMALES

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	** \$3	# <u>G</u>	2	5,11

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente	
Infiltración	2.	* s	# 0	
Pérdidas en cauces	8.5.	17 8	5	
Transferencias laterales	X.	•	\$ # \$	
Retornos de riego	8 =		:	
Recursos Renovables (RREN)	412,86	Fuente: D.H. Cantábrico (2009)		

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	8
Salidas al mar	. SE	-	3
Humedales	<u>j</u> #	23	550 550
Manantiales	-		•
Total Restricciones Medioambientales (RMED)	55,42	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 357,44

Índice de explotación y disponibilidad

Extracciones (B)	Recurso disponible (RDIS)	Índice de explotación	Recurso no comprometido
(hm³/año)	(hm³/año)	(le = B/RDIS)	(hm³/año)
5,11	357,44	0,01	

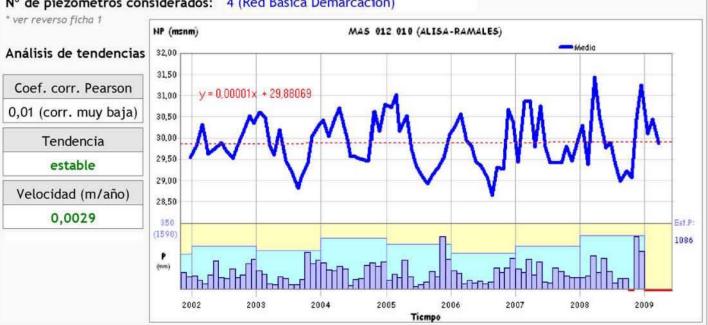
Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.010 - ALISA-RAMALES

Ficha 2

Análisis de la tendencia de la serie histórica


No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

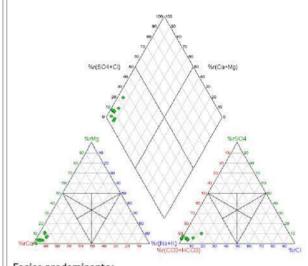
Serie media común

_	or it media coman			Cota NP (m.s.n.m	.)
	Periodo común	Nº valores	Media	Media Mínima	Media Máxima
	diciembre 2001-marzo 2009 (88 meses/7,33 años)	347	29,89	28,65	31,44

Nº de piezómetros considerados: 4 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.010 - ALISA-RAMALES

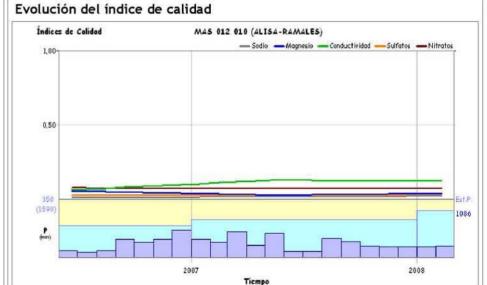

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 3	(Red I	Básica Dei	marcación)	Period	Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)			
Parámetro	7 1	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a	20°C)	9	270,85	160,67	320,00	305,00	Ο 91,4234 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)		9	1,94	1,40	2,83	1,93	● -0,5887 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)		9	3,67	3,60	3,80	3,67	-0,0867 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)		9	3,16	2,57	4,10	4,10	(0,9193 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)		9	6,54	6,00	7,10	6,93	-0,1444 (mg/l SO4/año)	250,00		

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (9 muestra/s)

Valores del Índice de Calidad (Ic)

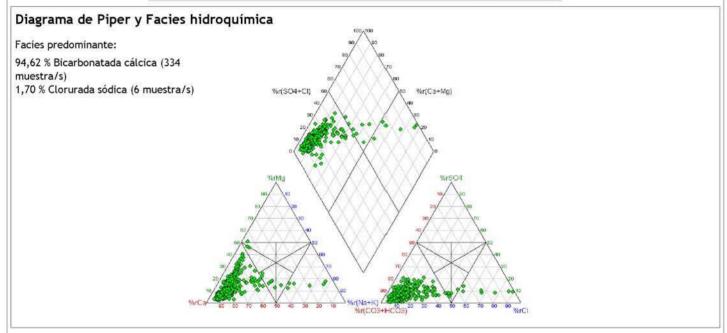
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,12	
Magnesio	0,04	
Nitratos	0,07	
Sodio	0,02	
Sulfatos	0,03	

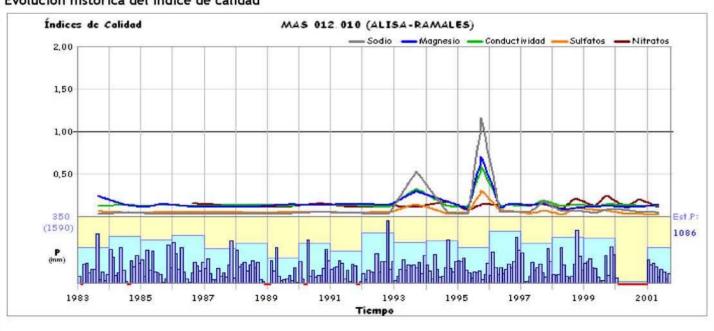
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.010 - ALISA-RAMALES

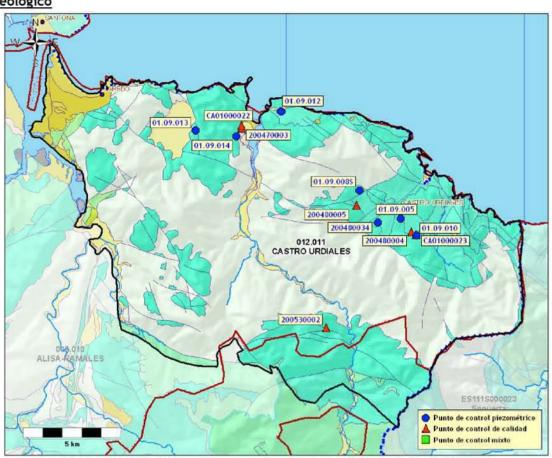
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	18 (Red IG	ME)	Periodo común		agosto 1983-mayo 2001 (214 meses/17,83 años)				
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a 20°C)	444	387,99	283,87	1492,76	305,78	Ο 6,0136 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)	425	7,91	4,06	35,59	6,89	0,0473 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)	386	6,91	3,78	12,61	5,78	0,1288 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)	444	21,49	6,00	232,56	9,78	() 1,5022 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)	440	16,13	5,28	77,62	5,44	(0,3067 (mg/l SO4/año)	250,00		

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES

MASS 012.011 - CASTRO URDIALES

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 🕆

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA, PAÍS VASCO

Provincia/s: CANTABRIA, VIZCAYA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
279,50 km ²	% Superficie	29,23 %	1,12 %	10,64 %	56,22 %	2,41 %

Características hidrogeológicas:

Constituida por calizas con rudistas del Cretácico inferior (fm. Calizas de Ramales), sobre todo al N de la unidad, con espesores de hasta 700-800 m. Además hay calizas con rudistas, dolomías y margas (fm. Reocín) de edad Aptiense, y calizas arenosas, areniscas con ostreidos y orbitolinas y calizas con Toucasia (Aptiense inferior) en la zona SE. Estos materiales pertenecen al Complejo Urgoniano, y se disponen sobre formaciones lutíticas de facies Purbeck-Weald o sobre margas del propio Complejo, con frecuentes cambios de facies. Toda la unidad se encuentra afectada por plegamientos y fallas de dirección NO-SE, y muy karstificada. La recarga se produce por infiltración del agua de lluvia, y se descarga por numerosos manantiales, a través del río Asón y, en algunos puntos, hacia el mar.

Puntos de control piezométrico

- Red básica Demarcación: 6 puntos (periodo del 31/01/2001 al 23/03/2009)
- Red IGME: 1 punto (periodo del 01/10/1981 al 10/11/1988)

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 22/06/2006 al 11/02/2008)
- Red IGME: 4 puntos (periodo del 22/08/1983 al 15/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.011 - CASTRO URDIALES

Ficha 1

Puntos de control

Red básica D	emarcad	ión									
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.09.005	481633	4800332	50,00			94	01/2001	03/2009	40,61	43,80	42,22
01.09.0085	479511	4801782	120,00			83	01/2002	03/2009	20,00	97,16	87,97
01.09.010	482430	4799469	50,00			27	01/2007	03/2009	41,25	45,88	41,74
01.09.012	475499	4805826	25,00			27	01/2007	03/2009	7,53	24,34	9,90
01.09.013	471138	4804859	54,00			27	01/2007	03/2009	18,90	27,45	24,27
01.09.014	473208	4804545	88,00			27	01/2007	03/2009	42,60	42,65	42,61
Red IGME	102	10								/	
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
200480034	480453	4800130	45,00	sondeo de pequeño diámetro, piezómetro	100,6	2	10/1981	11/1988	40,08	40,30	40,08

Calidad

areas and a second and a second as a secon	emarcac	ion							Última r	nedida	
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
CA01000022	473471	4805115	14,00	manantial		3	06/2006	02/2008	550,00	3,90	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	e anómalo:	0
CA01000023	482397	4799489	49,00	sondeo		3	06/2006	02/2008	350,00	7,60	
ed IGME	<u> </u>	icies (prom	<u>iedio):</u> Bicarbor	iatada catcica					Análisis con balance Última r	20040	1
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	É
200470003	473473	4804988	10,00	manantial		25	08/1983	05/2001	427,00	4,00	
2004/0003									Análisis con balance	e anómalo:	0
2004/0003	Fa	acies (prom	nedio): Bicarbor	natada calcica					THIRD COLL PRICE.	c anomato.	
2004/0003	482147	4799646	edio): Bicarbor 35,00	manantial		25	08/1983	05/2001	276,00	7,00	
	482147	4799646	or servery	manantial		25	08/1983	05/2001		7,00	0
essession of the lock of the second	482147	4799646	35,00	manantial		25	08/1983 08/1983	05/2001 05/2001	276,00	7,00	O
200480004	482147 <u>Fa</u> 479336	4799646 acies (prom 4801010	35,00 nedio): Bicarbor	manantial natada cálcica manantial			lines in the		276,00 Análisis con balance	7,00 e anómalo: 3,00	0
200480004	482147 <u>Fa</u> 479336	4799646 acies (prom 4801010	35,00 nedio): Bicarbor 80,00	manantial natada cálcica manantial			lines in the		276,00 Análisis con balance 237,00	7,00 e anómalo: 3,00	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.011 - CASTRO URDIALES

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		# # #	*	0,10

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente	
Infiltración	2.	•	:#K	
Pérdidas en cauces	8.5.	•=3	8 . 83	
Transferencias laterales	X.		3#.E	
Retornos de riego	9 F		**	
Recursos Renovables (RREN)	92,04	Fuente: D.H. Cantábrico (2009)		

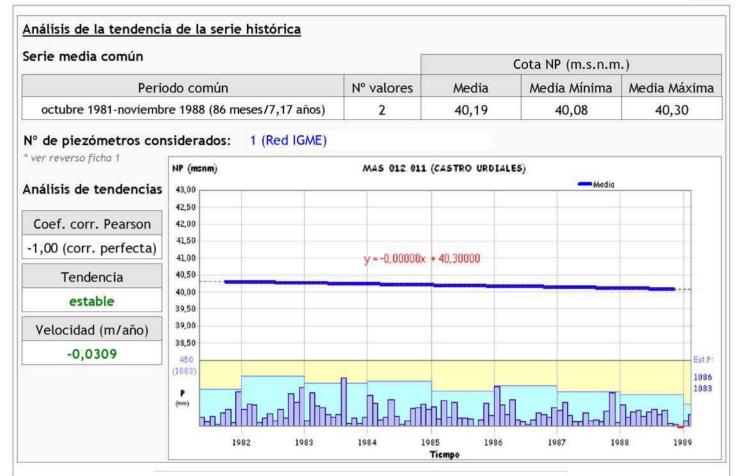
Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente	
Caudal ecológico	12	*		
Salidas al mar	\$ 2	-	•	
Humedales	je:	¥.	<u>S</u> 1	
Manantiales		•	•	
Total Restricciones Medioambientales (RMED)	16,77	Fuente: D.H. Cantábrico (2009)		

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 75,27

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)	
0,10	75,27	0,00	75,17	


Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.011 - CASTRO URDIALES

Ficha 2

Análisis de la tendencia de la serie actual

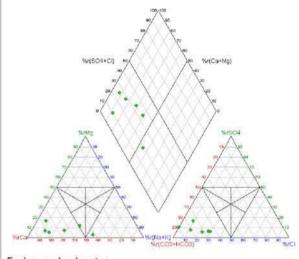
Serie media común

erie media coman	Cota NP (m.s.n.m.)			
Periodo común	Nº valores	Media	Media Mínima	Media Máxima
enero 2007-marzo 2009 (27 meses/2,25 años)	162	41,74	39,35	46,44

Nº de piezómetros considerados: 6 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.011 - CASTRO URDIALES

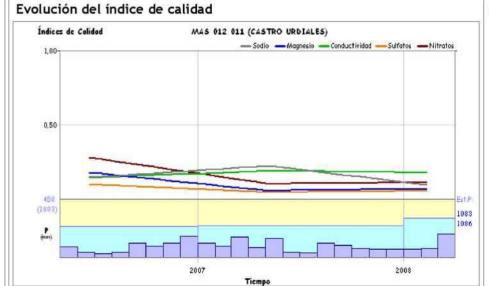

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red	Básica Demarcación)		Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)		
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	6	441,96	364,00	485,00	450,00	Ο 55,4399 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		6	4,84	2,95	9,10	3,50	O -3,5401 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		6	7,92	5,30	14,10	5,75	● -5,2636 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		6	34,54	19,60	45,40	19,60	• -5,1755 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		6	16,28	12,00	25,00	14,35	● -6,7853 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 66,67 % Bicarbonatada cálcica (4 muestra/s)

Valores del Índice de Calidad (Ic)

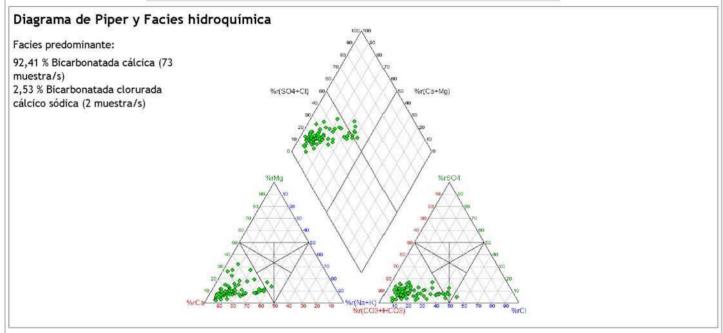
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual	
Conductividad	0,18		
Magnesio	0,07		
Nitratos	0,12		
Sodio	0,10		
Sulfatos	0,06		

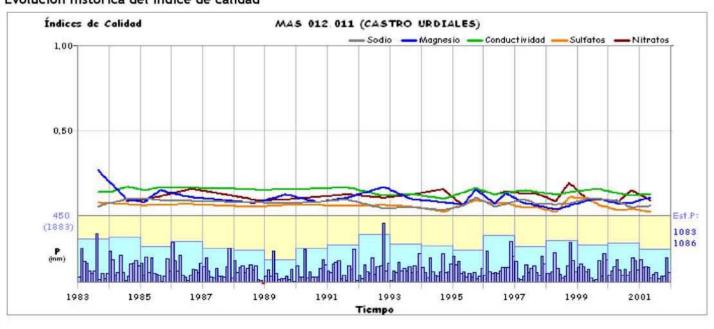
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.011 - CASTRO URDIALES

Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	4 (Red IG	4 (Red IGME)		Periodo común		agosto 1983-mayo 2001 (214 meses/17,83 años)		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a 20°C	96	361,19	247,50	429,50	315,75	• -4,6591 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)	92	5,12	1,75	13,50	5,50	-0,1642 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	92	5,90	3,25	9,75	4,50	0,0212 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	96	14,85	6,25	21,25	11,25	● -0,1906 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	95	14,76	5,00	27,00	5,50	-0,1568 (mg/l SO4/año)	250,00	

Evolución histórica del índice de calidad

CARACTERÍSTICAS GENERALES MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
859,59 km ²	% Superficie	4,17 %	0,18 %	4,12 %	2,30 %	89,17 %

Características hidrogeológicas:

La masa limita al N con la masa Oviedo-Cangas de Onís, en el contacto entre los materiales cretácicos de dicha masa con los paleozoicos de esta. Al E, limita con la caliza de montaña perteneciente a la Región del Ponga. El límite O es un contacto geológico entre los materiales carboníferos de la presente masa y las calizas del Carbonífero y otros materiales más antiguos de la masa Somiedo-Trubia-Pravia. Esta compuesta por materiales de la fm. San Emiliano del Carbonífero, que incluyen, lutitas, areniscas y calizas. También hay afloramientos de pizarras, conglomerados y carbón, de la misma edad. Todos ellos corresponden a la zona Cantábrica del Macizo Ibérico. Al norte se incluyen algunos afloramientos triásicos. El mecanismo principal de recarga es la infiltración de lluvia, si bien pueden existir otros procesos de importancia local.

Puntos de control piezométrico

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 14/06/2006 al 18/02/2008)
- Red IGME: 2 puntos (periodo del 10/09/1983 al 17/04/2001)

CARACTERÍSTICAS GENERALES MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

Ficha 1

iezometría											
		_									
alidad Red básica D	emarcac	ión							Última n	nedida	_
<u>Código</u>	<u>X</u> (UTM)	<u>Y</u> (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	<u>Inicio</u>	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	3
CA01000024	264188	4789221	562,00	manantial		3	06/2006	02/2008	320,00	2,80	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica				The state of the s	Análisis con balance	anómalo:	(
CA01000025	294485	4776986	612,00	manantial		3	06/2006	02/2008	240,00	0,70	
Red IGME	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica			A	<i>y</i> -	Análisis con balance		C
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	-54
120580001	265380	4786020	610,00	manantial		20	10/1988	04/2001	222,00	4,00	П
	Fa	acies (prom	nedio): Bicarbor	natada cálcica	-				Análisis con balance	anómalo:	(
140550001	295550	4790304	320,00	manantial		21	09/1983	04/2001	189,00	3,00	
	Fa	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	# 53	2	*	4,32

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	•	:#X
Pérdidas en cauces	8.5.	•=3	\$.
Transferencias laterales	X.		3 # .8
Retornos de riego	9 F		**
Recursos Renovables (RREN)	180,15	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>	-	2
Salidas al mar	\$ 5 .	•	3
Humedales	je:		<u>정</u>]
Manantiales		•	·
Total Restricciones Medioambientales (RMED)	30,84	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 149,31

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
4,32	149,31	0,03	144,99

Clasificación según el Índice de Explotación (le): Disponibilidad

anverso

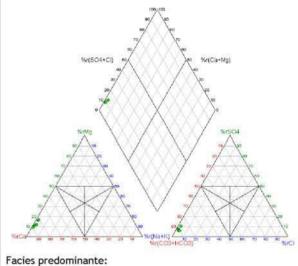
CARACTERÍSTICAS PIEZOMÉTRICAS MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

Ficha 2

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
I-200 F 1 T 1	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

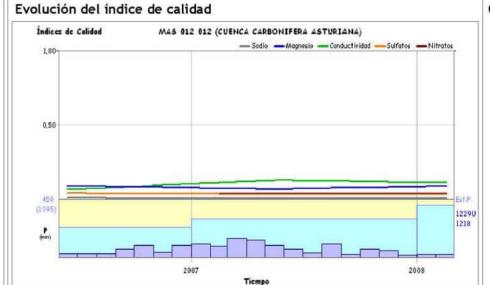

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red l	Básica Dei	marcación)	Period	Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)		
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a	20°C)	6	270,39	170,50	325,00	280,00	Ο 70,3481 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)		6	4,01	3,45	4,60	4,45	-0,1486 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)		6	1,89	1,75	2,00	1,75	-0,1468 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)		6	1,54	1,35	1,95	1,45	O -0,3157 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)		6	8,83	8,15	10,20	8,55	• -1,0473 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


100,00 % Bicarbonatada cálcica (6 muestra/s)

Valores del Índice de Calidad (Ic)

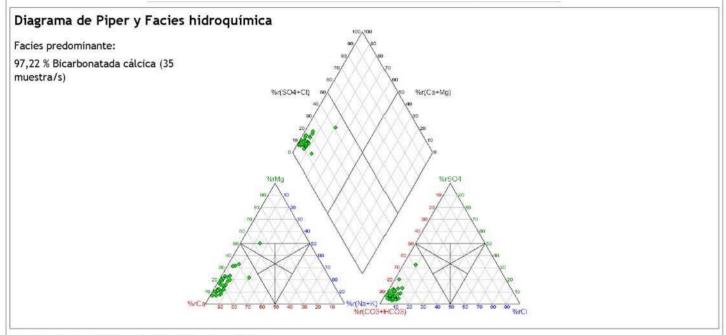
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,11	
Magnesio	0,09	
Nitratos	0,03	
Sodio	0,01	
Sulfatos	0,03	

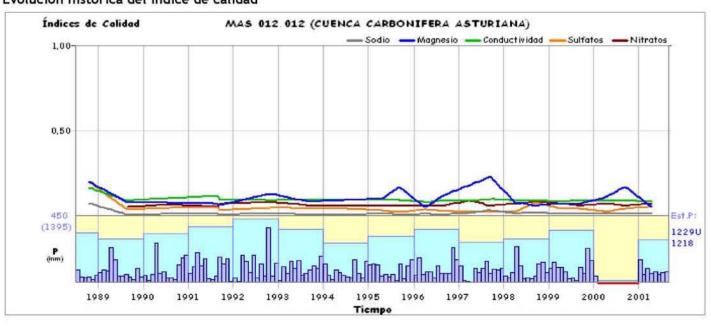
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.012 - CUENCA CARBONIFERA ASTURIANA

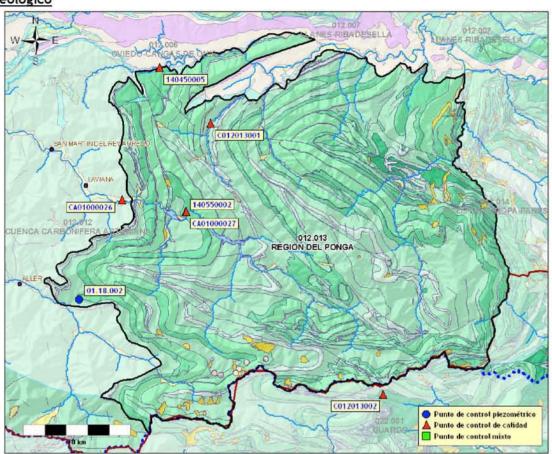
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	2 (Red IG	2 (Red IGME)		Periodo común		octubre 1988-abril 2001 (151 meses/12,58 años)		
Parámetro	N° valores Media		Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a 20°	C) 41	236,49	201,00	409,55	205,50	O -5,6716 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)	39	5,25	2,50	11,50	2,50	0,0533 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	40	3,28	2,50	4,50	3,50	0,0326 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	41	2,78	1,50	14,57	2,50	-0,1050 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	40	11,06	5,00	49,78	13,00	● -0,7703 (mg/l SO4/año)	250,00	

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.013 - REGIÓN DEL PONGA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS

Provincia/s: ASTURIAS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
1031,56 km ²	% Superficie	7,02 %	0,88 %	19,74 %	30,83 %	41,21 %

Características hidrogeológicas:

Al N, el límite se establece por el contacto con los materiales cretácicos de la masa Oviedo-Cangas de Onís. Al E, coincide con el cauce del río Sella. Al O limita con los materiales de baja permeabilidad de la fm. San Emiliano de la masa Cuenca Carbonífera Asturiana. Está constituida por subunidades independientes situadas en la Caliza de Montaña, separadas por las pizarras y cuarcitas del Cámbrico - Ordovícico, y por los materiales de baja permeabilidad de la fm. San Emiliano de edad Namuriense-Westfaliense. Pueden alcanzar espesores medios de 500 m. Se trata de numerosas láminas cabalgantes, sin desarrollo de esquistosidad ni metamorfismo. La recarga se produce a partir de infiltración de lluvia directa y de cauces. La descarga se produce por drenaje a los ríos Nalón, Aller y Piloña, y por manantiales de escaso caudal.

Puntos de control piezométrico

• Red básica Demarcación: 1 punto (periodo del 28/01/2002 al 24/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 4 puntos (periodo del 14/06/2006 al 20/02/2008)
- Red IGME: 2 puntos (periodo del 05/02/1980 al 25/04/2001)

CARACTERÍSTICAS GENERALES

MASS 012.013 - REGIÓN DEL PONGA

Ficha 1

	Puntos	de	cont	rol
--	--------	----	------	-----

Piezometría

Red básica D	Demarcad	ión									
Código	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	Inicio medidas	Fin medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> <u>medida</u>
01.18.002	291476	4780826	596,00			81	01/2002	03/2009	584,28	593,94	591,73

Calidad

		Albania i							Última	medida
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)
C012013001	303695	4797240	260,00	manantial		2	05/2007	02/2008	315,00	159,00
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:
C012013002	319688	4771949	1421,00	manantial		2	05/2007	02/2008	520,00	1,60
	Fa	acies (prom	nedio): Sulfatad	a cálcica					Análisis con balanc	e anómalo:
CA01000026	295454	4790113	327,00	manantial		3	06/2006	02/2008	290,00	2,40
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:
CA01000027	301391	4788991	451,00	manantial		3	06/2006	02/2008	270,00	1,90
	Fa	acies (prom	nedio): Bicarbor	natada cálcica	110		.,	***	Análisis con balanc	e anómalo:
ed IGME									Última	medida
Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)
140450005	298920	4802400	238,00	manantial		29	02/1980	04/2001	243,00	4,00
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:
140550002	301360	4789000	470,00	manantial		18	11/1983	04/2001	182,00	1,00
	-	to come you are	edio): Bicarbor	HARACHE ME LADOR CANODECE.	-				Análisis con balanc	e anómalo:

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.013 - REGIÓN DEL PONGA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		 변 전	*	0,07

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	*	:
Pérdidas en cauces	8.5.	 5	8 # 8
Transferencias laterales	8 e s	-	S#18
Retornos de riego	9 - .		*:
Recursos Renovables (RREN)	283,80	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	19	*	3 /2
Salidas al mar	95	-	3
Humedales	(#	£1	55) 550
Manantiales	-		•«
Total Restricciones Medioambientales (RMED)	67,77	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 216,03

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,07	216,03	0,00	215,96

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.013 - REGIÓN DEL PONGA

Ficha 2

	nálicie	do	La	tand	onci	ah c	la corio	histórica
-	analisis	ae	ıa	tena	enci	a de	ia serie	nistorica

No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

Serie media común

Serie media coman		Cota NP (m.s.n.m	.)	
Periodo común	Nº valores	Media	Media Mínima	Media Máxima
enero 2002-marzo 2009 (87 meses/7,25 años)	81	591,15	584,28	593,94

Nº de piezómetros considerados: 1 (Red Básica Demarcación)

Análisis de tendencias

Coe	f. corr	. Pearson
-0,11	(corr.	muy baja)

Tendencia estable

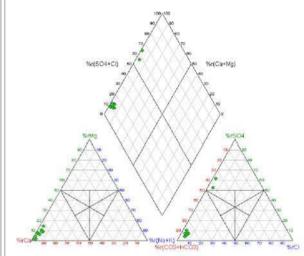
Velocidad (m/año)

-0,0595

^{*} ver reverso ficha 1

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.013 - REGIÓN DEL PONGA


Ficha 3

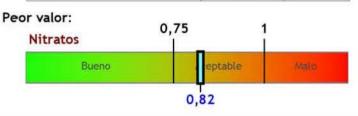
Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	4 (Red	Básica De	marcación)	Period	o común	mayo 2007-febrero 2008 (10 meses/0,83 años)		
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	10	376,73	348,75	403,75	348,75	O -72,4084 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		10	2,22	1,80	2,65	2,65	1,1201 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		10	21,00	2,05	41,23	41,23	1 51,7955 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		10	2,59	2,23	2,97	2,97	(0,9873 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		10	46,75	39,40	53,92	39,40	• -19,0973 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica

Facies predominante:


80,00 % Bicarbonatada cálcica (8 muestra/s)

20,00 % Sulfatada cálcica (2 muestra/s)

Valores del Índice de Calidad (Ic)

[P] (Concentración del parámetro) Fórmula: Ic = [V_i] (Valor límite impuesto por Legislación)

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,14	
Magnesio	0,05	
Nitratos	0,82	
Sodio	0,01	
Sulfatos	0,16	

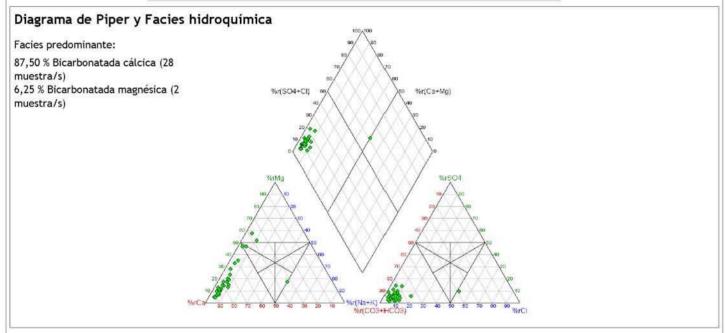
Evolución del índice de calidad Índices de Calidad

MAS 012 013 (REGIÓN DEL PONGA) - Sodio - Magnesio - Conductividad - Sulfatos - Nitratos 1,00 0.50 1216 2008 Tiempo

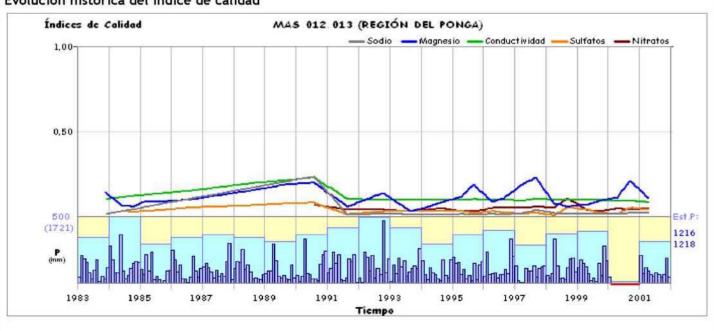
Observaciones

Clasificación según el Índice de Calidad (Ic): Aceptable para la mayor parte de la Masa (peor valor lc Nitratos = 0,82)

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.013 - REGIÓN DEL PONGA

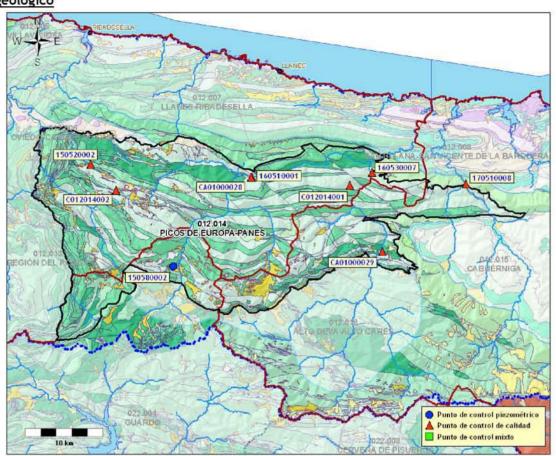
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados 2 (Red IGME) Periodo común noviembre 1983-abril 20				ore 1983-abril 2001 (210 meses/17,5	001 (210 meses/17,50 años)		
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 20°C) 45	322,37	212,50	578,00	212,50	O -12,2296 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	44	5,98	1,50	11,50	5,50	0,0312 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	37	2,35	1,50	5,50	2,50	0,0468 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	45	13,06	2,00	47,50	4,50	● -1,4263 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	45	9,91	2,00	20,50	10,00	● -0,3547 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.014 - PICOS DE EUROPA-PANES

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS, CANTABRIA, CASTILLA Y LEÓN

Provincia/s: ASTURIAS, CANTABRIA, LEÓN

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
883,04 km ²	% Superficie	42,17 %	1,73 %	31,80 %	21,75 %	2,39 %

Características hidrogeológicas:

Limita al N con una franja de baja permeabilidad (cabalgamiento) E-O de edad Cámbrico-Ordovícico, al E con el Buntsandstein de la franja cabalgante del Escudo de Cabuérniga y con facies Purbeck-Weald de la masa Cabuérniga, al S con el paleozoico de la unidad Alto Deva-Alto Cares y al O, con el río Sella. Está formada por la Caliza de Montaña (calizas claras masivas de la fm. Valdeteja, calizas oscuras tableadas de la fm. Barcaliente y nodulosas rojas o "caliza griotte") del Carbonífero. Es una potente serie (de espesor medio 1100 m), con calizas apiladas en escamas de dirección E-O, y planos de cabalgamiento subparalelos a la estratificación, con despegue en la caliza griotte o la Formación Barcaliente. La recarga se produce por infiltración de lluvia. La descarga se produce por numerosos manantiales y por los ríos Cares y Deva.

Puntos de control piezométrico

Red IGME: 1 punto (periodo del 15/09/1979 al 06/08/1980)

Puntos de control hidroquímico

- Red básica Demarcación: 4 puntos (periodo del 20/06/2006 al 14/02/2008)
- Red IGME: 4 puntos (periodo del 05/12/1979 al 08/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.014 - PICOS DE EUROPA-PANES

Ficha 1

Puntos de co	ntrol										
Piezometría											
Red IGME											
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	Fin medidas	-	Cota NP máxima	<u>Última</u> medida
150580002	344431	4784230	600,00	manantial		2	09/1979	08/1980	598,50	599,50	599,50
Calidad											
Red básica D	emarcac	ión							Últir	na medida	
<u>Código</u>	X (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)		tratos mg/l)
C012014001	367120	4794646	507,00	manantial		2	05/2007	02/2008	360,00	1	4,30
	<u>F</u> .	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con bala	ance anóm	<u>alo:</u> 0
C012014002	337011	4793973	946,00	manantial		2	05/2007	02/2008	340,00		9,50
	F	acies (prom	nedio): Bicarbo	natada cálcica	171				Análisis con bala	ance anóm	<u>alo:</u> 0
CA01000028	354481	4795642	149,00	manantial		3	06/2006	02/2008	310,00		4,20
	<u>F</u> :	acies (pron	nedio): Bicarbo	natada cálcica					Análisis con bala	ance anóm	alo: 0
CA01000029	371319	4786063	265,00	manantial		3	06/2006	02/2008	495,00		1,20
Red IGME	E	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con bala Últin	ance anóm na medida	alo: 0
<u>Código</u>	X (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	-	tratos mg/l)
150520002	333780	4797320	220,00	manantial		20	08/1989	04/2001	223,00		4,00
	<u>F</u>	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con bal	ance anóm	alo: 0
160510001	354600	4795650	145,00	manantial		20	12/1979	04/2001	221,00		2,00
	<u>F</u>	acies (pron	nedio): Bicarbo	natada cálcica					Análisis con bal	ance anóm	<u>alo:</u> 0
160530007	369991	4796266	80,00	manantial		19	08/1989	05/2001	300,00		2,00
	F.	acies (prom	nedio): Bicarbo	natada cálcica	1.1		n'		Análisis con bala	ance anóm	alo: 0
170510008	382090	4794856	300,00	manantial		25	08/1983	05/2001	227,00		2,00
	E	acies (prom	nedio): Bicarbo	natada cálcica					Análisis con bal	ance anóm	alo: 0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.014 - PICOS DE EUROPA-PANES

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
18	2	<u>0</u>) : 변 전	*	0,01

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	(
Pérdidas en cauces	8.5.	17 8	5 80
Transferencias laterales	X.	•	\$ # 8
Retornos de riego	9 F		: €2
Recursos Renovables (RREN)	449,34	Fuente: D.H. Cantábrico (2009)	

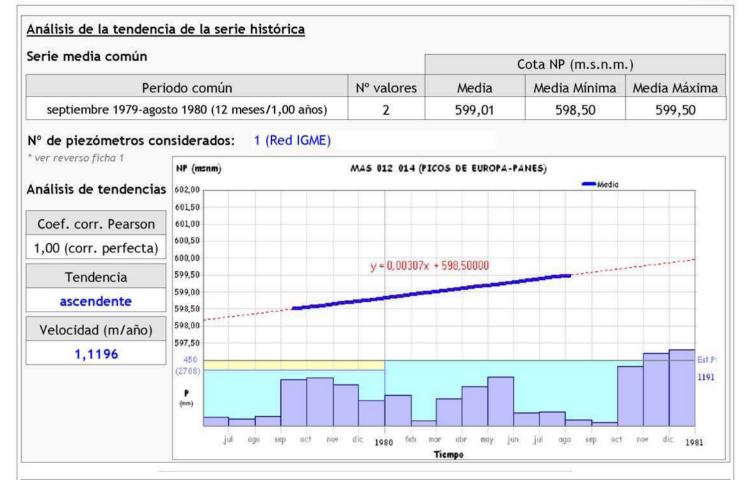
Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		•	<u> </u>
Salidas al mar	\$ 2	-	3
Humedales	E	-	31
Manantiales			•.
Total Restricciones Medioambientales (RMED)	65,39	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 383,95

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,01	383,95	0,00	383,94


Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.014 - PICOS DE EUROPA-PANES

Ficha 2

Análisis de la tendencia de la serie actual

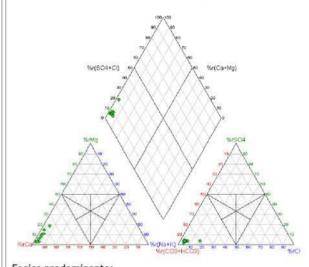
Serie media común

Serie media comun	Cota NP (m.s.n.m.)			
Periodo común	N° valores	Media	Media Mínima	Media Máxima
septiembre 1979-agosto 1980 (12 meses/1,00 años)	2	599,01	598,50	599,50

Nº de piezómetros considerados: 1 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.014 - PICOS DE EUROPA-PANES

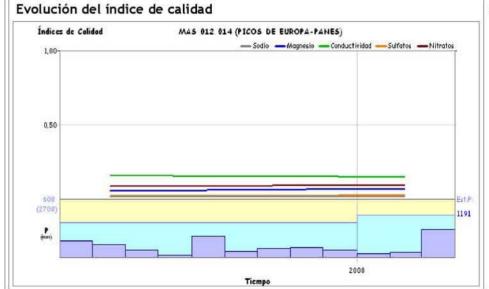

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	4 (Red	Básica De	marcación)	Period	Periodo común		mayo 2007-febrero 2008 (10 meses/0,83 años)				mayo 2007-febrero 2008 (10 meses/0,83 a		
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite					
Conductividad (µS/cm	a 20°C)	10	387,63	376,25	398,75	376,25	O -30,2535 (μS/cm a 20°C/año)	2500,00					
Magnesio (mg/l Mg)		10	3,19	2,77	3,60	3,60	() 1,0951 (mg/l Mg/año)	50,00					
Nitratos (mg/l NO3)		10	4,55	4,30	4,80	4,80	(0,6751 (mg/l NO3/año)	50,00					
Sodio (mg/l Na)		10	3,03	2,90	3,15	3,15	(0,3267 (mg/l Na/año)	200,00					
Sulfatos (mg/l SO4)		10	5,77	5,10	6,45	6,45	1,8135 (mg/l SO4/año)	250,00					

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (10 muestra/s)

Valores del Índice de Calidad (Ic)

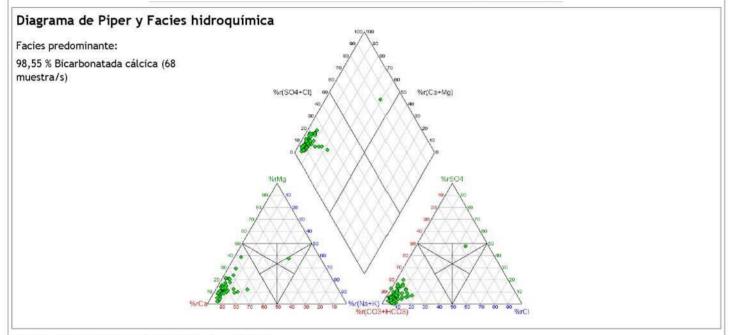
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,15	
Magnesio	0,07	
Nitratos	0,10	
Sodio	0,02	
Sulfatos	0,03	

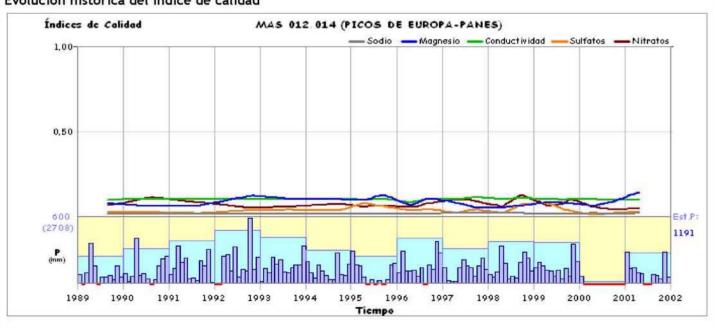
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.014 - PICOS DE EUROPA-PANES

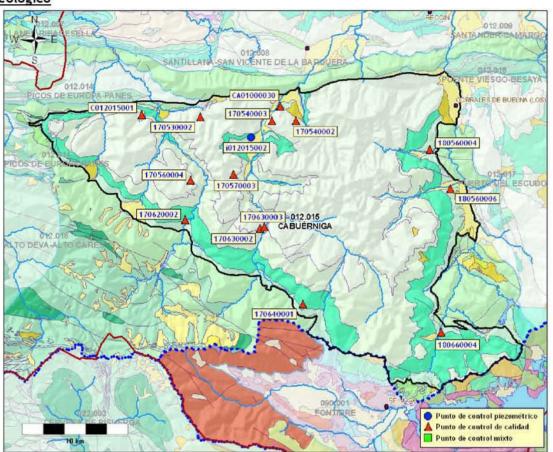
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	4 (Red IG	4 (Red IGME)		Periodo común		agosto 1989-abril 2001 (141 meses/11,75 años)			
Parámetro	N° valores	Madia	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a 20°C	79	259,07	208,35	290,25	242,47	• -0,3007 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)	74	4,34	2,75	7,20	7,20	0,0093 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)	78	3,76	2,00	6,50	2,47	-0,0499 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)	79	3,55	3,00	4,75	3,97	0,0650 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)	77	9,40	2,50	20,25	6,78	(0,2633 (mg/l SO4/año)	250,00		

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.015 - CABUÉRNIGA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA

Provincia/s: CANTABRIA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
709,50 km ²	% Superficie	3,75 %	6,70 %	0,02 %	89,35 %	0,19 %

Características hidrogeológicas:

Está constituida por un amplio sinclinorio de configuración triangular, cuyo núcleo es un extenso afloramiento de sedimentos detríticos de la facies Purbeck-Weald con espesores de hasta 2500 m de areniscas, con intercalaciones de arcillas y algunos niveles margosos y calizos, pudiendo independizarse pequeños acuíferos, independientes entre sí. En la base y bordes del sinclinal, afloran las calizas y dolomías del Lías y Dogger, con espesores entre 150-400 m. Es el acuífero más importante de la masa apareciendo en superficie muy fisuradas y karstificadas. La recarga se produce por infiltración del agua de lluvia. En el acuífero de la formación Purbeck-Weald la descarga se produce por numerosos manantiales, y por los arroyos. La descarga del acuífero jurásico, se realiza por manantiales, y por algunos ríos como el Saja y Besaya.

Puntos de control piezométrico

Red básica Demarcación: 1 punto (periodo del 18/01/2007 al 24/03/2009)

Puntos de control hidroquímico

- Red básica Demarcación: 2 puntos (periodo del 21/06/2006 al 12/02/2008)
- Red IGME: 12 puntos (periodo del 24/11/1982 al 17/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.015 - CABUÉRNIGA

Ficha 1

Puntos de control

Piezometría

ed básica Demarcación											
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	Fin medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
i012015002	394581	4787439	246,00			27	01/2007	03/2009	191,55	220,00	194,68

Calidad

6 5.1.	N/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	N. P. A. C. C. B. C. C. C.		4 21.	1700000000		Última n		o:
<u>Código</u>	(UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	121
C012015001	384189	4789521	317,00	manantial		2	05/2007	02/2008	280,00	0,70	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
CA01000030	397254	4790380	188,00	manantial		3	06/2006	02/2008	230,00	3,10	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
ed IGME									Última n	adida	
Código	<u>X</u>	Υ	Cota	Naturaleza	Prof.	Análisis	Inicio	Fin	Conductividad	Nitratos	
	(UTM)	(UTM)	(m.s.n.m.)		(m)		<u> </u>	1.112	(µS/cm)	(mg/l)	
170530002	389737	4789320	320,00	manantial		25	08/1983	05/2001	244,00	0,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica		1			Análisis con balance	anómalo:	(
170540002	398727	4788964	200,00	manantial		25	08/1983	05/2001	149,00	1,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
170540003	396529	4788977	250,00	manantial		25	08/1983	05/2001	181,00	3,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
170560004	388785	4783329	360,00	manantial		25	04/1983	05/2001	105,00	1,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
170570003	392887	4783903	450,00	manantial		26	04/1983	05/2001	34,00	5,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica	1.1				Análisis con balance	anómalo:	
170620002	388303	4779584	240,00	manantial		24	08/1983	05/2001	323,00	2,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	
170630002	395366	4778716	620,00	manantial		26	04/1983	05/2001	62,00	1,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
170630003	395817	4778908	480,00	manantial		27	11/1982	05/2001	89,00	1,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	(
170640001	399401	4771520	1100,00	manantial		23	08/1983	05/2001	26,00	6,00	
	Fa	acies (prom	nedio): Bicarbor	natada mixta					Análisis con balance	anómalo:	
180560004	411470	4786223	175,00	manantial		23	08/1983	05/2001	356,00	2,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	
180560006	413387	4782518	190,00	manantial		26	08/1983	05/2001	315,00	3,00	
	Fa	acies (prom	nedio): Bicarbor	natada cálcica					Análisis con balance	anómalo:	
180660004	412547	4768877	700,00	manantial		24	08/1983	05/2001	287,00	4,00	
	12		nedio): Bicarbor	antada cálcica	1				Análisis con balance		1

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.015 - CABUÉRNIGA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	<u>2</u>	P.C.	-	0,01

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	.
Pérdidas en cauces	8.5.	17 8	\$. 50
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	8 =		35 2
Recursos Renovables (RREN)	233,25	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>	-	2
Salidas al mar	<u> </u>	-	
Humedales	je:	-	3
Manantiales			
Total Restricciones Medioambientales (RMED)	22,70	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 210,55

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,01	210,55	0,00	210,54

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.015 - CABUÉRNIGA

Ficha 2

Análisis de la tendencia de la serie histórica

No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual

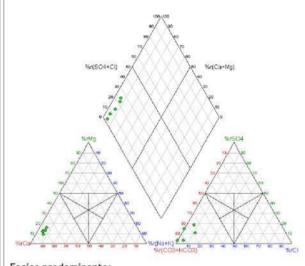
Serie media común

		Cota NP (m.s.n.m.)				
Periodo común	N° valores	Media	Media Minima	Media Máxima		
enero 2007-marzo 2009 (27 meses/2,25 años)	27	199,11	191,55	220,00		

Nº de piezómetros considerados: 1 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.015 - CABUÉRNIGA

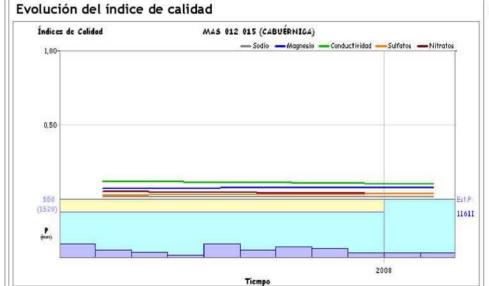

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 2 (Red Básica Demarcación			Period	o común	mayo 2007-febrero 2008 (10 meses/0,83 años)			
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm a 2	0°C) 5	281,66	255,00	310,00	255,00	O -71,4413 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)	5	3,83	3,65	4,00	4,00	● 0,4546 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	5	2,26	1,90	2,65	1,90	• -0,9742 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	5	3,49	3,30	3,70	3,30	• -0,5196 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	5	8,23	7,15	9,25	9,25	() 2,7278 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (5 muestra/s)

Valores del Índice de Calidad (Ic)

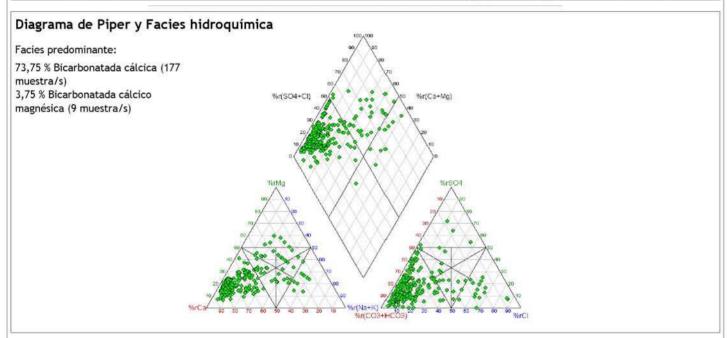
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,10	
Magnesio	0,08	
Nitratos	0,04	
Sodio	0,02	
Sulfatos	0,04	

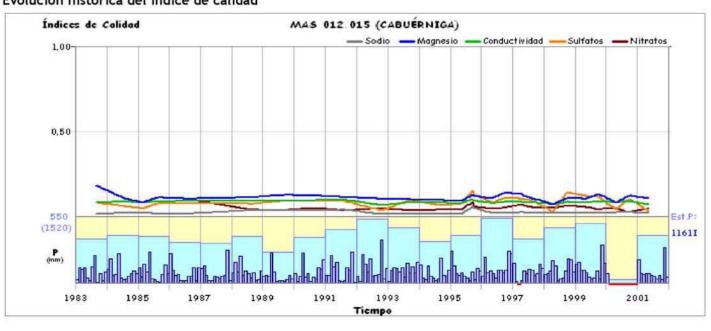
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.015 - CABUÉRNIGA

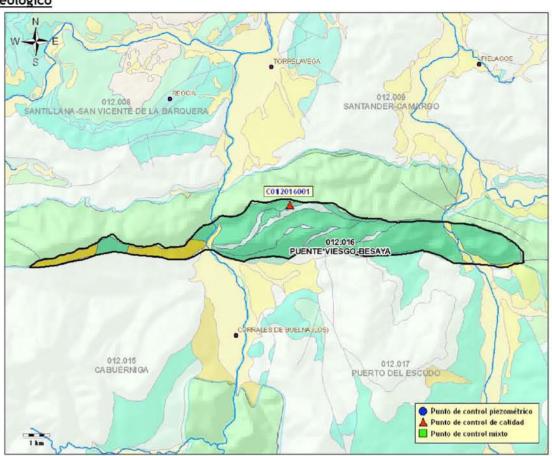
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	12 (Red IC	ME)	Periodo	o común	agosto	1983-mayo 2001 (214 meses/17,83	años)
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm a 2	0°C) 298	217,61	167,17	259,67	180,92	• -1,2923 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)	282	5,62	3,62	9,25	5,42	-0,0329 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)	252	2,54	1,42	5,17	2,42	-0,0385 (mg/l NO3/año)	50,00
Sodio (mg/l Na)	298	5,12	2,97	12,08	4,83	-0,0115 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)	291	20,71	7,05	38,42	8,33	(0,3140 (mg/l SO4/año)	250,00

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.016 - PUENTE VIESGO-BESAYA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA

Provincia/s: CANTABRIA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
21,00 km ²	% Superficie	10,20 %	0,13 %	76,71 %	12,90 %	0,07 %

Características hidrogeológicas:

Limita al Norte y al Este con los materiales de baja permeabilidad del Buntsandstein (Franja cabalgante del escudo de Cabuérniga), al Sur con la Masa Puerto del Escudo, cuyo límite se establece por el contacto entre los materiales carboníferos de la presente unidad, con las lutitas rojas, areniscas y conglomerados de la Facies Purbeck - Weald y las calizas del Jurásico de la masa Cabuérniga. Está formada por las calizas grises y claras, calizas rojas y nodulosas de la Facies Picos de Europa de edad Carbonífero superior, asociadas al borde meridional de la Franja Cabalgante del Escudo de Cabuérniga, pudiendo alcanzar espesores desde 800 hasta 2000 m. La unidad se encuentra afectada por numerosas fallas con dirección NO - SE. La recarga se produce por infiltración del agua de lluvia y la descarga, a través de manantiales y ríos.

Puntos de control piezométrico

Puntos de control hidroquímico

• Red básica Demarcación: 1 punto (periodo del 08/05/2007 al 12/02/2008)

CARACTERÍSTICAS GENERALES MASS 012.016 - PUENTE VIESGO-BESAYA

Ficha 1

Puntos de co	ntrol									
Piezometría										
		N-								
Calidad										
Red básica D	emarcac	ión							Última n	nedida
<u>Código</u>	<u>X</u>	<u>Y</u>	<u>Cota</u>	Naturaleza	Prof.	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad	Nitratos
	(UTM)	(UTM)	(m.s.n.m.)		<u>(m)</u>				(µS/cm)	(mg/l)
C012016001	415930	4795360	339,00	manantial		2	05/2007	02/2008	460,00	3,60
	<u>F</u> a	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balance	anómalo: 0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.016 - PUENTE VIESGO-BESAYA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		<u>2</u>	-	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente	
Infiltración	2.	* 3	.	
Pérdidas en cauces	8.5.	173	\$. 50	
Transferencias laterales	X.	: - 8	3 # .8	
Retornos de riego	9 F	**	**	
Recursos Renovables (RREN)	9,09	Fuente: D.H. Cantábrico (2009)		

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	19	•	9
Salidas al mar	\$ 5	•	.
Humedales	E	÷	31
Manantiales		-	4.5
Total Restricciones Medioambientales (RMED)	2,36	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 6,73

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	6,73	0,00	6,73

Clasificación según el Índice de Explotación (le): Disponibilidad

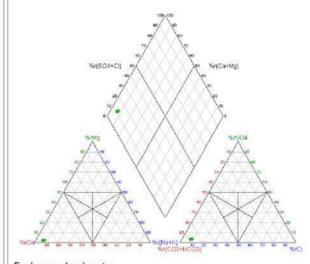
CARACTERÍSTICAS PIEZOMÉTRICAS MASS 012.016 - PUENTE VIESGO-BESAYA

Ficha 2

Análisis de la tendencia de la serie histórica
No es posible el análisis piezométrico por falta de datos históricos
Análisis de la tendencia de la serie actual
No es posible el análisis piezométrico por falta de datos actuales

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.016 - PUENTE VIESGO-BESAYA

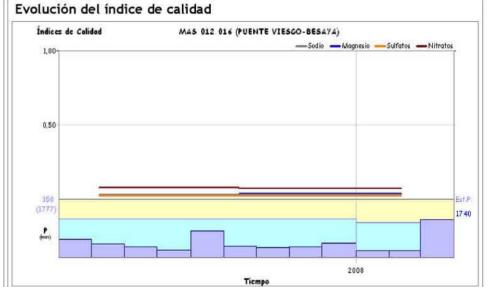

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	1 (Red Básica De	1 (Red Básica Demarcación)			mayo 2007-febrero 2008 (10 meses/0,83 años)			
Parámetro	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Magnesio (mg/l Mg)	2	1,75	1,60	1,90	1,90	● 0,3911 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)	2	3,79	3,60	4,00	3,60	• -0,5214 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)	2	6,44	6,10	6,80	6,10	• -0,9125 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)	2	6,05	6,00	6,10	6,00	-0,1304 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (2 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Magnesio	0,04	
Nitratos	0,07	
Sodio	0,03	
Sulfatos	0,02	

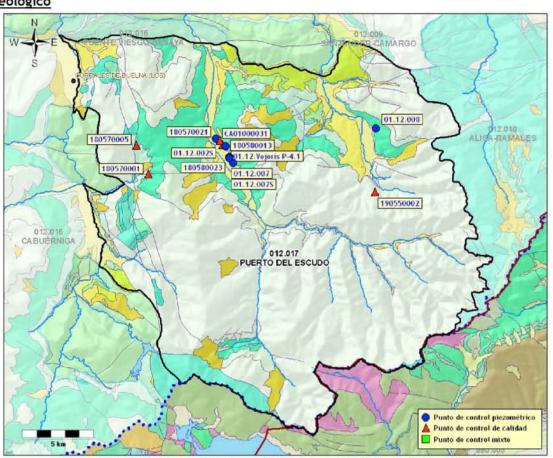
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 012.016 - PUENTE VIESGO-BESAYA

Ficha 3


Análisis de la serie histórica							
Síntesis de parámetros analizados							
Puntos considerados	Periodo común						
Diagrama de Piper y Facies hidroquímica							
Facies predominante:							
Evolución histórica del índice de calidad							
Evolución instorica del muice de calidad							
	l l						

CARACTERÍSTICAS GENERALES MASS 012.017 - PUERTO DEL ESCUDO

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA

Provincia/s: CANTABRIA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
558,13 km ²	% Superficie	6,07 %	4,64 %	2,62 %	85,75 %	0,93 %

Características hidrogeológicas:

La mayor parte de esta masa está ocupada por las facies Purbeck - Weald, compuesta por un potente paquete (hasta 2500 m) de areniscas con intercalaciones de arcillas y niveles de permeabilidad baja-media, constituyendo acuíferos de poco espesor y continuidad lateral limitada, independientes entre sí. El acuífero principal son los materiales carbonatados de edad Lías-Dogger, muy fisurados y karstificados en superficie. Su espesor oscila entre 150-400 m. Además, tienen cierta importancia los Cuaternarios de los ríos Pas y Pisueña, con espesores inferiores a 50 m; y las calizas y dolomías aptienses. La recarga se realiza por infiltración directa del agua de lluvia, y a través de los sumideros que presentan algunos ríos y arroyos. La descarga se produce por manantiales, arroyos y por los ríos Pas, Besaya, Pisueña y sus afluentes.

Puntos de control piezométrico

- Red básica Demarcación: 5 puntos (periodo del 19/01/2001 al 15/04/2009)
- Red IGME: 2 puntos (periodo del 20/07/1988 al 30/10/1989)

Puntos de control hidroquímico

- Red básica Demarcación: 1 punto (periodo del 06/06/2006 al 12/02/2008)
- Red IGME: 4 puntos (periodo del 26/04/1983 al 17/05/2001)

CARACTERÍSTICAS GENERALES

MASS 012.017 - PUERTO DEL ESCUDO

Ficha 1

Puntos de control

Piezometría

Código	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	<u>Inicio</u> <u>medidas</u>	<u>Fin</u> <u>medidas</u>	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.12.0025	424605	4785880	154,00			100	01/2001	04/2009	133,20	152,50	151,30
01.12.007	425146	4784684	153,00			85	12/2001	03/2009	130,47	147,02	137,87
01.12.0075	425146	4784684	153,00			40	01/2001	04/2009	130,80	144,27	139,30
01.12.008	435140	4787136	247,00			87	12/2001	03/2009	174,00	197,36	183,34
.12.Vejorís P-4.	424900	4785030	149,00			100	01/2001	04/2009	125,10	143,90	139,95
Red IGME		A) 12									
<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
180570021	423938	4786414	132,00	sondeo	115	3	03/1989	10/1989	124,15	129,80	124,15
180580023	424876	4785084	152,30	sondeo	188	2	07/1988	10/1989	138,34	144,52	138,34

Calidad

ed básica D	emarcac	tion							Última i	medida	
Código	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
CA01000031	424210	4786260	128,00	manantial		4	06/2006	02/2008	505,00	2,80	
	<u>Fa</u>	acies (prom	edio): Clorurad	da sulfatada cálc	ico sódio	a			Análisis con balanc	e anómalo:	(
Red IGME									Última i	medida	
<u>Código</u>	X (UTM)	Y (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
180570001	419177	4783893	290,00	manantial		26	08/1983	05/2001	361,00	5,00	
	<u>Fa</u>	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:	(
180570005	418320	4785914	370,00	manantial		23	08/1983	05/2001	49,00	2,00	
	<u>Fa</u>	acies (prom	edio): Bicarbor	natada cálcica					Análisis con balanc	e anómalo:	(
		VIEW COLUMN COLUMN CO.	192,00	manantial		22	08/1983	05/2001	411,00	4,00	
180580013	424383	4785937	172,00						CV-CQ-CONSTRUCTION CONTRACTOR	Section 1941 Contract	772
180580013	See See	E TE STE	140-250-	da sulfatada cálc	ico sódio	a			Análisis con balanc	e anómalo:	(
180580013 190550002	See See	E TE STE	140-250-	da sulfatada cálc	ico sódio	26	04/1983	05/2001	Análisis con balanc	e anómalo: 1,00	110

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.017 - PUERTO DEL ESCUDO

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	astecimiento Agricultura y ganadería		Recreativo	Otro	Total (B) (hm³/año)	
•		<u>21</u> 22	25 28	•	9,54	

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	* s	æ
Pérdidas en cauces	8.5	1 7 3	5 . 3
Transferencias laterales	3.e.i	·•	3.5
Retornos de riego	9.0		*:
Recursos Renovables (RREN)	211,37	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>		
Salidas al mar	<u> </u>		
Humedales	je:	#1	3
Manantiales		•	•
Total Restricciones Medioambientales (RMED)	23,94	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 187,43

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
9,54	187,43	0,05	177,89

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.017 - PUERTO DEL ESCUDO

Ficha 2


Análisis de la tendencia de la serie histórica Serie media común Cota NP (m.s.n.m.) Periodo común N° valores Media Minima Media Máxima Media marzo 1989-octubre 1989 (8 meses/0,67 años) 5 131,25 135,55 134,19 Nº de piezómetros considerados: 2 (Red IGME) " ver reverso ficha 1 NP (msnm) MAS 012 017 (PUERTO DEL ESCUDO) -Media Análisis de tendencias 140,0 139,0 Coef. corr. Pearson 138,0 137.0 V = -0.01667x + 135,78937-0,92 (corr. muy alta) 136,0 135,0 Tendencia 134.0 descendente 133,0 132,0 Velocidad (m/año) 131,0 -6,0835450 Est.P: (2171) 11210 1124 P 11178 dic feb abr may. Jun jul. oct 1000 1020 Tiempo

Análisis de la tendencia de la serie actual

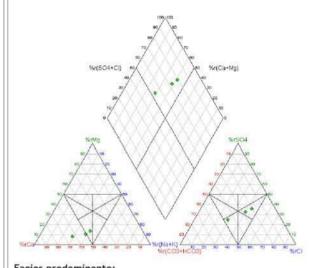
~		• -	me					
`	er	10	me	וחי	a (20	mı	ın

Serie media coman	Cota NP (m.s.n.m.)				
Periodo común	Nº valores	Media	Media Mínima	Media Máxima	
diciembre 2001-marzo 2009 (88 meses/7,33 años)	382	151,29	142,34	156,08	

Nº de piezómetros considerados: 5 (Red Básica Demarcación)

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.017 - PUERTO DEL ESCUDO

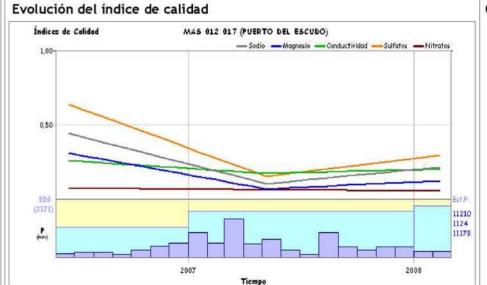

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	1 (Red	Básica De	marcación)	Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)		
Parámetro	2	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	3	516,26	440,00	652,00	505,00	• -94,9977 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		3	7,63	3,50	15,60	6,30	O -5,9553 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		3	3,24	2,80	3,70	2,80	• -0,5483 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		3	45,83	21,10	88,70	43,50	() -29,3108 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		3	81,81	38,30	160,20	74,30	O -55,4295 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 33,33 % Clorurada sulfatada cálcico sódica (1 muestra/s)

Valores del Índice de Calidad (Ic)

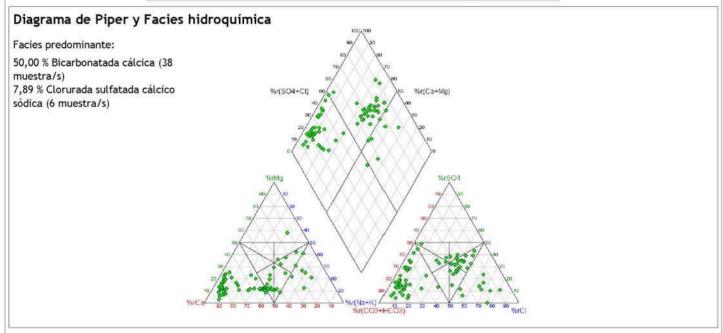
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,20	
Magnesio	0,13	
Nitratos	0,06	
Sodio	0,22	
Sulfatos	0,30	

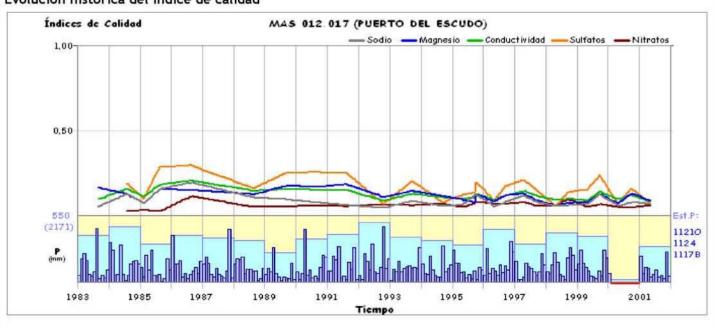
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS


MASS 012.017 - PUERTO DEL ESCUDO

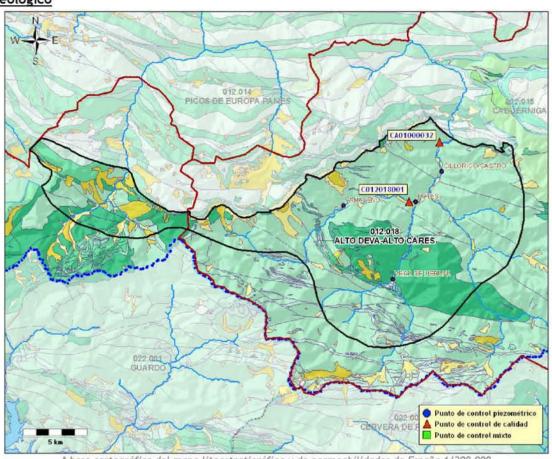
Ficha 3


Análisis de la serie histórica

Síntesis de parámetros analizados

Puntos considerados	4 (Red IG	4 (Red IGME)		Periodo común		agosto 1983-mayo 2001 (214 meses/17,83 años)			
Parámetro	N° valores	Modia	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite		
Conductividad (µS/cm a 20°C	97	332,23	212,75	517,25	212,75	• -10,0183 (μS/cm a 20°C/año)	2500,00		
Magnesio (mg/l Mg)	92	6,34	3,00	9,25	4,50	-0,1757 (mg/l Mg/año)	50,00		
Nitratos (mg/l NO3)	87	3,14	1,25	5,75	3,00	0,0185 (mg/l NO3/año)	50,00		
Sodio (mg/l Na)	97	18,74	9,00	39,25	13,75	● -0,7388 (mg/l Na/año)	200,00		
Sulfatos (mg/l SO4)	94	44,81	14,50	74,00	17,25	● -1,9516 (mg/l SO4/año)	250,00		

Evolución histórica del índice de calidad



CARACTERÍSTICAS GENERALES MASS 012.018 - ALTO DEVA-ALTO CARES

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 has

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: CANTABRIA, CASTILLA Y LEÓN

Provincia/s: CANTABRIA, LEÓN

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
296,12 km ²	% Superficie	5,81 %	2,25 %	3,71 %	25,56 %	62,66 %

Características hidrogeológicas:

El límite Norte, lo constituye el contacto de los pizarras y cuarcitas que componen esta unidad con la Caliza de Montaña carbonífera de la masa Picos de Europa-Panes. Hacia el Sur, la masa se extiende mediante una envolvente de los núcleos de población de más de 50 habitantes con abastecimientos dependientes de aguas subterráneas. Está formada por materiales paleozoicos que incluyen lutitas, areniscas, conglomerados, cuarcitas y pizarras, intensamente tectonizados, del extremo oriental de la zona Cantábrica del Macizo Ibérico. El mecanismo principal de recarga es la infiltración de la precipitación sobre las zonas de mayor permeabilidad relativa, si bien pueden existir otros procesos de importancia local.

Puntos de control piezométrico

Puntos de control hidroquímico

• Red básica Demarcación: 2 puntos (periodo del 21/06/2006 al 14/02/2008)

CARACTERÍSTICAS GENERALES MASS 012.018 - ALTO DEVA-ALTO CARES

Puntos de co	ntrol										
Piezometría											
Calidad Red básica D	emarcac	ión							Última r	medida	
<u>Código</u>	X (UTM)	Y_ (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
C012018001	367460	4779410	303,00	manantial		2	05/2007	02/2008	610,00	6,50	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica			***	th.	Análisis con balanc	e anómalo: 0	
CA01000032	369871	4784088	257,00	manantial		3	06/2006	02/2008	390,00	24,60	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica			20		Análisis con balanc	e anómalo: 0	

CARACTERÍSTICAS VOLUMÉTRICAS MASS 012.018 - ALTO DEVA-ALTO CARES

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		 변 전	*	0,07

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	* s	# 0
Pérdidas en cauces	8.5	17 8	5
Transferencias laterales	5.E.	•	\$ # \$
Retornos de riego	8.00		18 2
Recursos Renovables (RREN)	62,32	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	-	5 0
Manantiales			
Total Restricciones Medioambientales (RMED)	25,67	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 36,65

Índice de explotación y disponibilidad

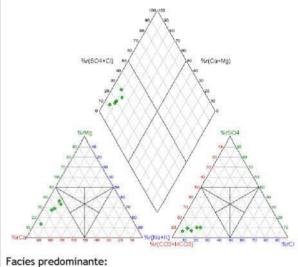
Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,07	36,65	0,00	36,58

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASS 012.018 - ALTO DEVA-ALTO CARES

Análisis de la tendencia de la serie histórica							
No es posible el análisis piezométrico por falta de datos históricos							
Análisis de la tendencia de la serie actual							
No es posible el análisis piezométrico por falta de datos actuales							

CARACTERÍSTICAS HIDROQUÍMICAS MASS 012.018 - ALTO DEVA-ALTO CARES

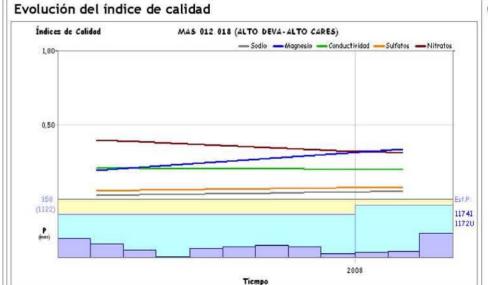

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 2 (Red Básica Demarcación)			Period	Periodo común mayo 2007-febrero 2008 (10 me			eses/0,83 años)	
Parámetro N° valores Media		Media	Media Media máxima		Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm	a 20°C)	5	512,19	500,00	525,00	500,00	• -32,2438 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		5	13,39	9,80	16,80	16,80	● 9,0283 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		5	17,70	15,55	19,95	15,55	● -5,6749 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		5	8,09	5,25	10,80	10,80	() 7,1581 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		5	17,45	14,45	20,30	20,30	7,5451 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


100,00 % Bicarbonatada cálcica (5 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

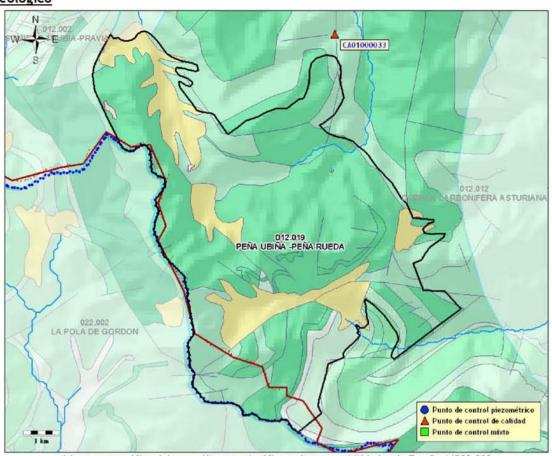
Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,20	
Magnesio	0,34	
Nitratos	0,31	
Sodio	0,05	
Sulfatos	0,08	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.018 - ALTO DEVA-ALTO CARES


Análisis de la serie histórica							
Síntesis de parámetros analizados							
Puntos considerados	Periodo común						
Diagrama de Piper y Facies hidroquímica							
Facies predominante:							
Evolución histórica del índice de calidad							
Evolución histórica del índice de calidad							

CARACTERÍSTICAS GENERALES MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: ASTURIAS, CASTILLA Y LEÓN

Provincia/s: ASTURIAS, LEÓN

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
54,92 km²	% Superficie	2	17,67 %	59,91 %	2,87 %	19,37 %

Características hidrogeológicas:

El límite N se establece por el contacto entre la Caliza de Montaña con los materiales de baja permeabilidad de la fm. San Emiliano. Al E, limita con las cuarcitas cámbricas de baja permeabilidad y al O, con materiales carboníferos (pizarras) de la unidad Somiedo-Trubia-Pravia. El límite S es la divisoria entre las vertientes cantábrica y atlántica. Está constituida por Caliza de Montaña (fm.Barcaliente y Valdeteja). Es una estructura muy replegada y fallada, afectada por los cabalgamientos característicos del Paleozoico en esta zona. La recarga se lleva a cabo por infiltración del agua de lluvia y en menor medida por la infiltración de la escorrentía superficial. La descarga se produce principalmente a través de dos manantiales importantes (el de Lindes y Cortes) que se utilizan para abastecimiento de Oviedo.

Puntos de control piezométrico

Puntos de control hidroquímico

• Red básica Demarcación: 1 punto (periodo del 15/06/2006 al 18/02/2008)

CARACTERÍSTICAS GENERALES MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA

Puntos de co	ntrol									
Piezometría										
on 1990 on 1 de		N								
Calidad										
Red básica D	emarcac	ión							Última m	nedida
<u>Código</u>	<u>X</u>	Y	<u>Cota</u>	Naturaleza	Prof.	<u>Análisis</u>	Inicio	<u>Fin</u>	Conductividad	Nitratos
	(UTM)	(UTM)	(m.s.n.m.)		<u>(m)</u>				(µS/cm)	<u>(mg/l)</u>
CA01000033	263022	4775557	842,00	manantial		3	06/2006	02/2008	285,00	1,80
	-	Section 1 years and	edio): Bicarbor						Análisis con balance	anómalo: 0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2	<u></u>	 변 전	*	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración		€.	
Pérdidas en cauces	8.50	•=3	5 5 5
Transferencias laterales			(₩E
Retornos de riego	1.		10
Recursos Renovables (RREN)	14,78	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	-	31
Manantiales			·
Total Restricciones Medioambientales (RMED)	1,51	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 13,27

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	13,27	0,00	13,27

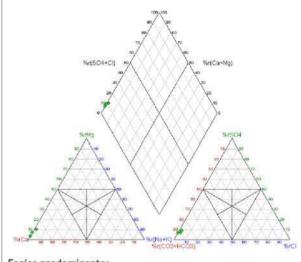
Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA

Análisis de la tendencia de la serie histórica	
No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA

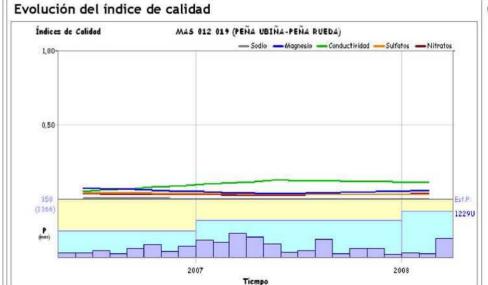

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	1 (Red	Básica De	marcación)	Periodo común		junio 2006-febrero 2008 (21 meses/1,75 años)			
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite	
Conductividad (µS/cm	a 20°C)	3	258,68	134,00	320,00	285,00	Ο 95,6900 (μS/cm a 20°C/año)	2500,00	
Magnesio (mg/l Mg)		3	2,66	1,80	3,90	2,90	O -0,6822 (mg/l Mg/año)	50,00	
Nitratos (mg/l NO3)		3	1,61	1,40	1,80	1,80	-0,0223 (mg/l NO3/año)	50,00	
Sodio (mg/l Na)		3	0,68	0,30	1,30	0,70	• -0,3948 (mg/l Na/año)	200,00	
Sulfatos (mg/l SO4)		3	9,08	8,10	11,20	8,10	• -1,9132 (mg/l SO4/año)	250,00	

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (3 muestra/s)

Valores del Índice de Calidad (Ic)

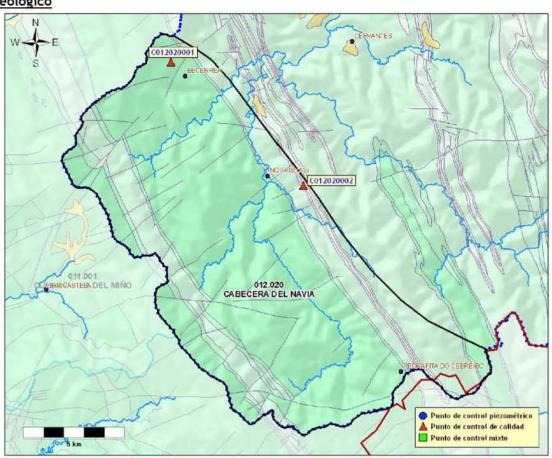
Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,11	
Magnesio	0,06	
Nitratos	0,04	
Sodio	0,00	
Sulfatos	0,03	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS MASS 012.019 - PEÑA UBIÑA-PEÑA RUEDA


Análisis de la serie h	istórica		
Síntesis de parámetr	os analizados		
Puntos considerados		Periodo común	
Diagrama de Piper y	Facies hidroquímica		
Facies predominante:			
Fortunita binkinia a	lat fadias da salidad		
Evolución histórica d	el indice de calidad		

CARACTERÍSTICAS GENERALES MASS 012.020 - CABECERA DEL NAVIA

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: GALICIA

Provincia/s: LUGO

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
187,20 km ²	% Superficie	2	5,54 %	<u>~1</u>	93,43 %	1,03 %

Características hidrogeológicas:

Sus límites Oeste y Sur corresponden con la divisoria de aguas superficiales de la cuenca alta del río Navia. La masa se cierra por el Noreste mediante una envolvente de varias poblaciones de más de 50 habitantes que se abastecen a partir de aguas subterráneas. Esta formada por materiales del Cámbrico, correspondientes al área oeste de la zona Asturoccidental Leonesa del Macizo Ibérico. Incluye cuarcitas, areniscas, pizarras y conglomerados; dispuestos en bandas con dirección NO-SE. También presenta intrusiones de rocas graníticas. El mecanismo principal de recarga es la infiltración de la precipitación sobre las zonas de mayor permeabilidad relativa, si bien pueden existir otros procesos de importancia local.

Puntos de control piezométrico

Puntos de control hidroquímico

• Red básica Demarcación: 2 puntos (periodo del 23/05/2007 al 05/03/2008)

CARACTERÍSTICAS GENERALES

MASS 012.020 - CABECERA DEL NAVIA

Puntos de cor	ntrol										
Piezometría											
		×									
Calidad											
Red básica De	emarcac	ión							Última n	nedida	
<u>Código</u>	X_ (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	<u>Inicio</u>	Fin	Conductividad (µS/cm)	Nitratos (mg/l)	
C012020001	159417	4753801	704,00	manantial		2	05/2007	03/2008	240,00	1,20	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica				10	Análisis con balance	e anómalo:	0
C012020002	165915	4747702	682,00	manantial		2	05/2007	03/2008	70,00	0,00	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica	4.5	7			Análisis con balance	e anómalo: 0	0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 012.020 - CABECERA DEL NAVIA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2	20 25	#* 변 본	-	0,13

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	.
Pérdidas en cauces	8.5.	17 8	5
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	9.0		:= 2
Recursos Renovables (RREN)	74,75	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	12	20	
Salidas al mar	\$ <u>\$</u>	*	.
Humedales	je:	8.	<u>3</u> 1
Manantiales		. s	•
Total Restricciones Medioambientales (RMED)	12,75	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 62,00

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,13	62,00	0,00	61,87

Clasificación según el Índice de Explotación (le): Disponibilidad

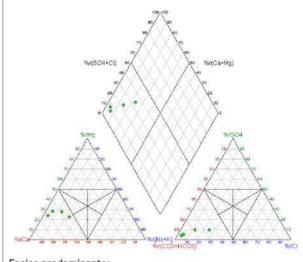
CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 012.020 - CABECERA DEL NAVIA

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.020 - CABECERA DEL NAVIA

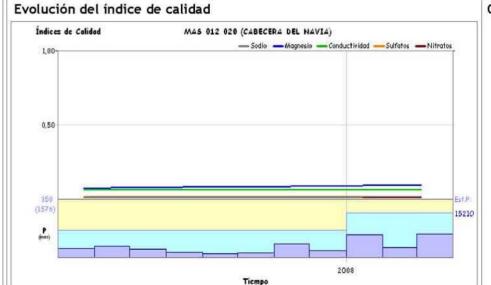

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red	Básica De	marcación)	Periodo común		mayo 2007-marzo 2008 (11 meses/0,92 años)		
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	4	157,48	155,00	160,00	155,00	O -6,3589 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		4	4,25	3,75	4,75	4,75	1,2718 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		4	0,62	0,60	0,65	0,60	-0,0636 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		4	2,70	2,40	3,00	3,00	() 0,7631 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		4	3,85	3,80	3,90	3,90	0,1272 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (4 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,06	
Magnesio	0,10	
Nitratos	0,01	
Sodio	0,02	
Sulfatos	0,02	

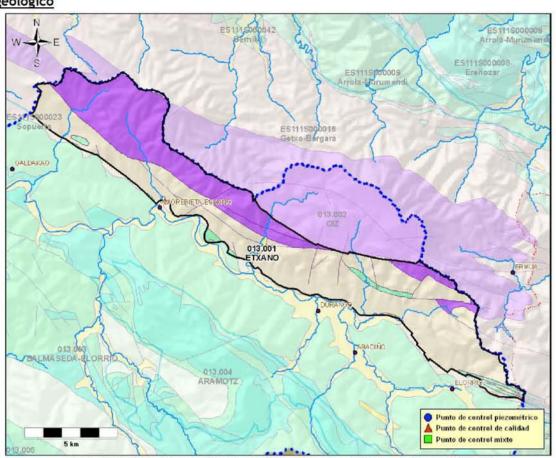
Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 012.020 - CABECERA DEL NAVIA

Análisis de la serie histórica					
Síntesis de parámetros analizados					
Puntos considerados	Periodo común				
Diagrama de Piper y Facies hidroquímica					
Facies predominante:					
Evolución histórica del índice de calidad					
Evolución histórica del índice de calidad					



CARACTERÍSTICAS GENERALES

MASS 013.001 - ETXANO

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 hase cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: VIZCAYA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
91,44 km ²	% Superficie	0,78 %	4	61,39 %	1,63 %	36,20 %

Características hidrogeológicas:

Limita al NE con la divisoria de la cuenca y con la masa Oiz, por el contacto tectónico con los depósitos carbonatados del Eoceno sup. Al E se define por la divisoria con las Cuencas Internas del País Vasco. Al SO limita con materiales de baja permeabilidad del Albiense-Cenomanense, alternancia de lutitas y arenas, de la masa Balmaseda-Elorrio. Está formada por materiales flyschoides del Cretácico superior, de permeabilidad no muy elevada, y en ocasiones por niveles detríticos groseros del Eoceno inferior, que pueden albergar acuíferos. Destacan dentro de la masa tres zonas: Mendiko, Mozolotoki y Etxano. La recarga se produce por infiltración de las precipitaciones, y la descarga, a través de los manantiales de Mendiko, Mozolotoki, Berroetas y Rugoso. Además, se producen descargas a los cauces de los arroyos, principalmente al Orobios.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES

MASS 013.001 - ETXANO

<u>Puntos de control</u>	
Piezometría	
Calidad	
N. July Realty Helds of North	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.001 - ETXANO

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)	2	<u> </u>	## 24	-	0,28

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	(
Pérdidas en cauces	8.5.	17 8	5 80
Transferencias laterales	3. e 1		3#8
Retornos de riego	9 - .		; = 2
Recursos Renovables (RREN)	33,84	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	12	•	3
Salidas al mar	\$E.	-	
Humedales		¥.	
Manantiales		•	<u>.</u>
Total Restricciones Medioambientales (RMED)	3,45	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 30,39

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,28	30,39	0,01	30,11

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASb 013.001 - ETXANO

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos				
Análisis de la tendencia de la serie actual				
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales				

CARACTERÍSTICAS HIDROQUÍMICAS

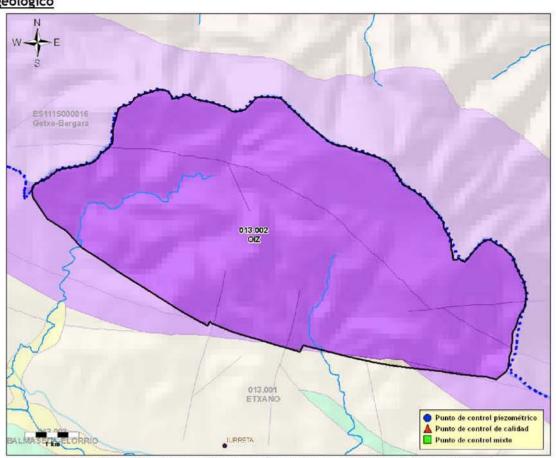
MASS 013.001 - ETXANO

Análisis de la serie actual Síntesis de parámetros analizados					
Puntos considerados Periodo común					
, and a constant and	CITOGO COMAIN				
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)			
Facies predominante:		Observaciones			
Evolución del índice de calidad		Observaciones			
Clasificación según el Índice de Calidad (Ic): No	disponible				

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 013.001 - ETXANO

Análisis de la serie histórica				
Síntesis de parámetros analizados				
Puntos considerados	Periodo común			
Diagrama de Piper y Facies hidroquímica				
Facies predominante:				
Evolución histórica del índice de calidad				
Evolución histórica del índice de calidad				



CARACTERÍSTICAS GENERALES

MASS 013.002 - OIZ

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: VIZCAYA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
28,66 km ²	% Superficie	2	4	0,36 %	1523	99,64 %

Características hidrogeológicas:

Los acuíferos principales son areniscas y microconglomerados del Eoceno inferior, y menos importantes son los materiales carbonatados del Eoceno medio y depósitos cuaternarios. Hay tres sectores: Arria, constituido por un nivel detrítico subvertical que forma el flanco Sur del anticlinal de Zengotita y el acuífero carbonatado del sinclinal de Garai; Ibarruri, dividido en una zona permeable al N, y una zona de barras de areniscas y conglomerados (Ibarruri-Gallanda); y el sector Oizetxebarrieta, de areniscas y microconglomerados con niveles lutíticos (flyschoides). La recarga se produce por la infiltración de la precipitación y por la infiltración de la escorrentía superficial. La descarga se produce a través de los manantiales Urzulu (surgencias a lo largo del arroyo del mismo nombre) e Ibarruri (alimenta el cauce del río Orobios).

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.002 - OIZ

<u>Puntos de control</u>		
Piezometría		
Calidad		
Calidad		

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.002 - OIZ

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		<u>2</u> 2	-	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración		•	
Pérdidas en cauces	8.E.	- 8	
Transferencias laterales	.e.	-	\$ # .8
Retornos de riego	2.00		**
Pacursos Panovables		Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		•	
Salidas al mar	\$ 2	-	3
Humedales	E	÷	릙
Manantiales		•	•.
Total Restricciones Medioambientales (RMED)	1,44	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 13,05

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	13,05	0,00	13,05

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASb 013.002 - OIZ

Análisis de la tendencia de la serie histórica	
No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

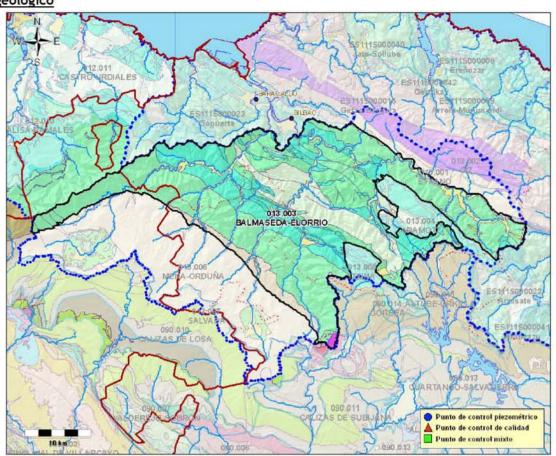
MASb 013.002 - OIZ

Análisis de la serie actual Síntesis de parámetros analizados					
Puntos considerados Periodo común					
, and a constant and	CITOGO COMAIN				
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)			
Facies predominante:		Observaciones			
Evolución del índice de calidad		Observaciones			
Clasificación según el Índice de Calidad (Ic): No	disponible				

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 013.002 - OIZ

Análisis de la serie histórica			
Síntesis de parámetros analizados			
Puntos considerados	Periodo común		
Diagrama de Piper y Facies hidroquímica			
Facies predominante:			
Evolución histórica del índice de calidad			
Evolución histórica del índice de calidad			



CARACTERÍSTICAS GENERALES

MASS 013.003 - BALMASEDA-ELORRIO

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO, CASTILLA Y LEÓN

Provincia/s: VIZCAYA, ÁLAVA, BURGOS

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
911,64 km ²	% Superficie	10,83 %	4	19,12 %	65,71 %	4,29 %

Características hidrogeológicas:

Está formada por materiales carbonatados, diferenciándose cuatro zonas de especial interés: el sector Udalaitz, formado por calizas arrecifales del complejo Urgoniano, limitadas lateral y verticalmente por cambios a facies terrígenas, y estructurado según un pliegue anticlinal cabalgante sobre materiales ubicados más al N; el sector Jorrios-Sodupe, formado por calizas arrecifales muy karstificadas; el sector Gallarta-Galdames, compuesto de materiales carbonatados; y el sector Cuaternario, constituido por materiales de esa edad. Se recarga por infiltración de la precipitación en los afloramientos permeables y por la escorrentía generada en las cuencas vertientes a dichos afloramientos. Se descarga a través de los manantiales de Udalaitz y Tarabio, y directamente al río Kadagua.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES

MASb 013.003 - BALMASEDA-ELORRIO

<u>Puntos de control</u>	
Piezometría	
Calidad	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.003 - BALMASEDA-ELORRIO

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
<u>(6</u>	g g	<u>#</u>	2	*	1,05

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	:#X
Pérdidas en cauces	8.5.	17 8	\$.
Transferencias laterales	X.	•	3 # .8
Retornos de riego	9 F		**
Recursos Renovables (RREN)	298,20	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	100	-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	•	31
Manantiales		•	
Total Restricciones Medioambientales (RMED)	44,37	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 253,83

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
1,05	253,83	0,00	252,78

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.003 - BALMASEDA-ELORRIO

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.003 - BALMASEDA-ELORRIO

Análisis de la serie actual Síntesis de parámetros analizados				
	eriodo común			
, and a sommation of the sound	enous comun			
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)		
Facies predominante:				
Evolución del índice de calidad		Observaciones		
Clasificación según el Índice de Calidad (Ic): No c	disponible			

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.003 - BALMASEDA-ELORRIO

Análisis de la serie histórica					
Síntesis de parámetros analizados					
Puntos considerados	Periodo común				
Diagrama de Piper y Facies hidroquímica	-				
Facies predominante:					
Evolución histórica del índice de calidad					

CARACTERÍSTICAS GENERALES

MASS 013.004 - ARAMOTZ

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 has

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: VIZCAYA, ÁLAVA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
68,59 km ²	% Superficie	53,69 %	4	13,02 %	33,29 %	124

Características hidrogeológicas:

La mayor parte de los materiales de la masa de agua subterránea, se situan en el sector central del Anticlinorio de Bilbao y pertenecen fundamentalmente al Cretácico inferior. Se trata principalmente de materiales carbonatados y detríticos, agrupados en dos complejos: el complejo Urgoniano, formado por calizas arrecifales con rudistas y corales; y el complejo Supraurgoniano, que integra una serie terrígena, de potencia considerable, constituida por lutitas y areniscas. Se recarga principalmente por infiltración de la precipitación, eventualmente en forma de nieve, y por infiltración de la escorrentía superficial. Se descarga principalmente a través de manantiales, y en menor proporción directamente a los cauces.

D	untos	do	contr	ol n	1070	mát	rico
۲	UHLOS	GE.	COHU	O(1)	12/0	11161	r ic o

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES

MASS 013.004 - ARAMOTZ

<u>Puntos de control</u>	
Piezometría	
Calidad	
N. Just Read (Procedinant)	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.004 - ARAMOTZ

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2		20 84	-	3,30

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	. *s	. # .
Pérdidas en cauces	8.5	i = 8	
Transferencias laterales	5.E.	•	:#2
Retornos de riego	8.00	**	: €2
Recursos Renovables (RREN)	26,12	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		8	3
Salidas al mar	\$ 2	*	•
Humedales	je:	3	
Manantiales		•	<u>.</u>
Total Restricciones Medioambientales (RMED)	2,62	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 23,50

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
3,30	23,50	0,14	20,20

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.004 - ARAMOTZ

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

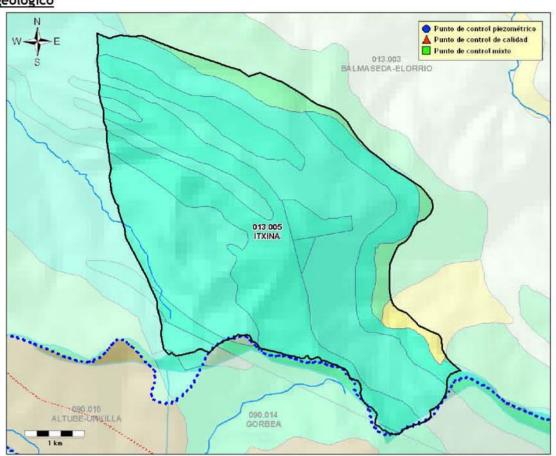
MASS 013.004 - ARAMOTZ

Análisis de la serie actual Síntesis de parámetros analizados		
	eriodo común	
, and a constant and	CITOGO COMAIN	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)
Facies predominante:		Observaciones
Evolución del índice de calidad		Observaciones
Clasificación según el Índice de Calidad (Ic): No	disponible	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.004 - ARAMOTZ

		i i did 5
Análisis de la serie histórica		
Síntesis de parámetros analizado	os .	
Puntos considerados	Periodo común	
Diagrama de Piper y Facies hidr	oquímica	
Facies predominante:		
Evolución histórica del índice de	calidad	



CARACTERÍSTICAS GENERALES

MASS 013.005 - ITXINA

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: VIZCAYA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
23,26 km ²	% Superficie	42,66 %	2	51,63 %	5,71 %	<u>~</u>

Características hidrogeológicas:

Esta masa está constituida por materiales del Cretácico inferior que se agrupan en varios complejos: complejo Urgoniano, materiales arrecifales que forman grandes bancos con rápidos tránsitos laterales y verticales de facies terrígenas; complejo Supraurgoniano, materiales terrígenos con afloramientos tales como lutitas, areniscas y lutitas y areniscas y conglomerados. También aparecen coluviales cuaternarios. La masa se dispone según una serie monoclinal buzante hacia el SO. La recarga se produce mediante infiltración de las precipitaciones. El flujo de descarga se orienta hacia el borde nororiental, donde se ubica la surgencia de Aldabide. Existen otros flujos menores hacia el borde occidental, donde se encuentran las surgencias Urrekuetxumun y Aitziturri. El drenaje hacia el borde oriental es escaso y drenado por Pagomakurre.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.005 - ITXINA

Puntos de control	
Piezometría	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.005 - ITXINA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	<u>2</u>	## Re	*	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	-	
Pérdidas en cauces	8.5.	-	.50
Transferencias laterales	7.E.	-	#2
Retornos de riego	9.00	-	
Recursos Renovables (RREN)	7,73	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico			
Salidas al mar	\$ 2	Ψ.	3
Humedales	je:	*	<u>3</u> 1
Manantiales		* S	•
Total Restricciones Medioambientales (RMED)	0,76	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 6,97

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	6,97	0,00	6,97

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASS 013.005 - ITXINA

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

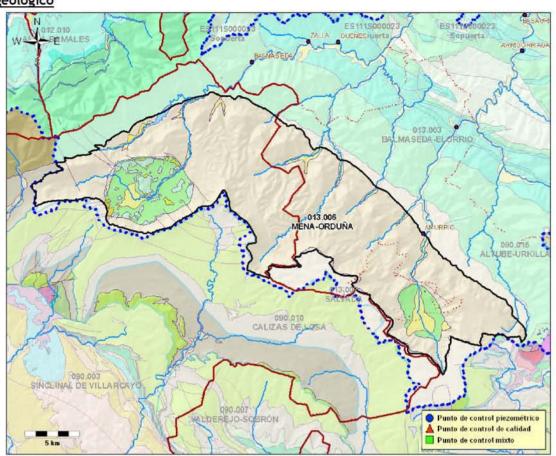
MASS 013.005 - ITXINA

Análisis de la serie actual Síntesis de parámetros analizados		
	eriodo común	
, and a constant and	CITOGO COMAIN	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)
Facies predominante:		Observaciones
Evolución del índice de calidad		Observaciones
Clasificación según el Índice de Calidad (Ic): No	disponible	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.005 - ITXINA

Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	
Facies predominante:	
Evolución histórica del índice de calidad	
Evolución histórica del índice de calidad	



CARACTERÍSTICAS GENERALES

MASS 013.006 - MENA-ORDUÑA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO, CASTILLA Y LEÓN

Provincia/s: BURGOS, ÁLAVA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
400,24 km ²	% Superficie	5,17 %	2,28 %	0,18 %	0,69 %	91,47 %

Características hidrogeológicas:

Los límites NO y NE se definen por el contacto con las lutitas, areniscas y conglomerados del Albinese superior, pertenecientes a la masa de agua subterránea Balmaseda-Elorrio. El límite meridional, con la masa Sierra Salvada, se localiza en el contacto con las calizas y calizas margosas del Cretácico superior, excepto en la zona más oriental, que limita por la divisoria de la cuenca del Ebro. Está formada por margas y margocalizas de permeabilidad muy baja de edades Cenomaniense-Coniaciense. Las zonas con mayor permeabilidad son los aluviales cuaternarios. La recarga se produce por infiltración de las precipitaciones, y la descarga, a favor de manantiales.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES

MASb 013.006 - MENA-ORDUÑA

<u>Puntos de control</u>	
Piezometría	
Calidad	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.006 - MENA-ORDUÑA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	9	÷	22 23	•	0,16

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	# 0
Pérdidas en cauces	8.5.	17 8	5
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	8 =		:
Recursos Renovables (RREN)	105,89	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>		
Salidas al mar	\$E	*	
Humedales	je:	#1	3
Manantiales		•	•
Total Restricciones Medioambientales (RMED)	11,05	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 94,84

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,16	94,84	0,00	94,68

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASD 013.006 - MENA-ORDUÑA

Análisis de la tendencia de la serie histórica	
No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
No es posible el análisis piezométrico por falta de datos actuales	

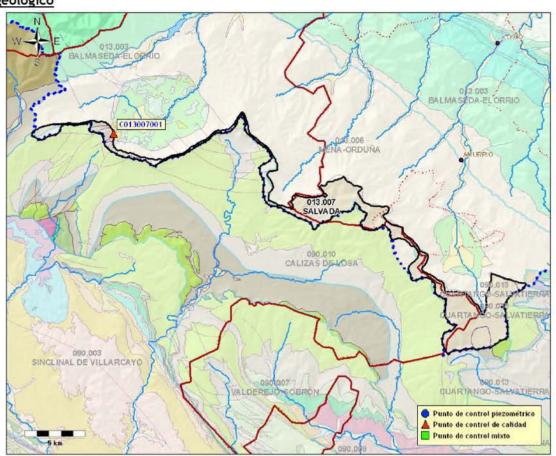
CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.006 - MENA-ORDUÑA

Análisis de la serie actual Síntesis de parámetros analizados		
Puntos considerados	eriodo común	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Cal	idad (Ic)
Facies predominante:		
Evolución del índice de calidad Clasificación según el Índice de Calidad (Ic): No de		Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.006 - MENA-ORDUÑA


Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	
Facies predominante:	
Evolución histórica del índice de calidad	
Evolución histórica del índice de calidad	

CARACTERÍSTICAS GENERALES MASS 013.007 - SALVADA

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO, CASTILLA Y LEÓN

Provincia/s: BURGOS, ÁLAVA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
60,10 km ²	% Superficie	91,22 %	41	-	0,01 %	8,77 %

Características hidrogeológicas:

Limita al N con las margas, margocalizas y calizas laminadas del Turoniense y Coniaciense pertenecientes a la masa Mena-Orduña. El límite meridional se identifica con la divisoria hidrográfica de la cuenca del Ebro. La zona saturada está formada por las denominadas Calizas de Subijana, las cuales incluyen calizas cremas, calizas bioclásticas, con nódulos de silex, dolomías, etc. La fracturación en la zona E es muy intensa y responde casi siempre a una etapa distensiva, posterior a los plegamientos de la zona. En la masa, se han diferenciado tres sectores: Osma, Abecia y Salvada. Este último es el menos fracturado. La recarga se produce por la infiltración de la precipitación. la descarga tiene lugar a través de manantiales.

Puntos de control piezométrico

Puntos de control hidroquímico

• Red básica Demarcación: 1 punto (periodo del 09/05/2007 al 11/02/2008)

CARACTERÍSTICAS GENERALES

MASb 013.007 - SALVADA

untos de co iezometría	na o t									
Calidad		2								
Red básica D	emarcac	ion							Última m	nedida
<u>Código</u>	<u>X</u> (UTM)	Y_ (UTM)	Cota (m.s.n.m.)	Naturaleza	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)
C013007001	471140	4769230	442,00	manantial		2	05/2007	02/2008	520,00	11,60
		Source of the second	edio): Bicarbor				i i		Análisis con balance	anómalo:

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.007 - SALVADA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	2	<u></u>	 변 전	*	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	.
Pérdidas en cauces	8.5.	17 8	5
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	8 =		35 2
Recursos Renovables (RREN)	19,12	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	
Salidas al mar	\$ 2	-	•
Humedales	je:	-	중1 50
Manantiales		- s	•
Total Restricciones Medioambientales (RMED)	1,93	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 17,19

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	17,19	0,00	17,19

Clasificación según el Índice de Explotación (le): Disponibilidad

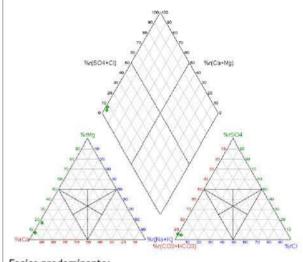
CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.007 - SALVADA

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.007 - SALVADA

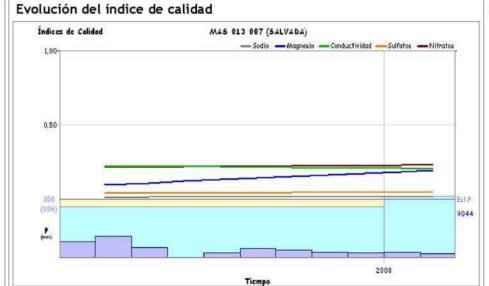

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 1 (Red Básica Demarcación)			Periodo común		mayo 2007-febrero 2008 (10 meses/0,83 años)			
Parámetro	7	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	2	539,44	520,00	560,00	520,00	• -52,5180 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		2	7,42	4,90	9,80	9,80	() 6,4335 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		2	11,16	10,70	11,60	11,60	1,1817 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		2	3,26	2,80	3,70	3,70	() 1,1817 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		2	11,29	10,00	12,50	12,50	() 3,2824 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (2 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

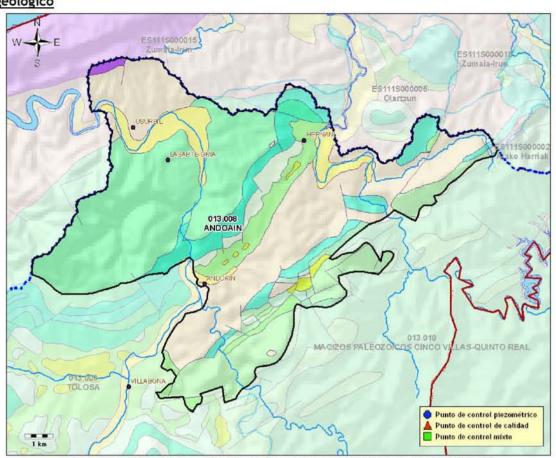
Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,21	
Magnesio	0,20	
Nitratos	0,23	
Sodio	0,02	
Sulfatos	0,05	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.007 - SALVADA


Análisis de la serie h	istórica		
Síntesis de parámetr	os analizados		
Puntos considerados		Periodo común	
Diagrama de Piper y	Facies hidroquímica		
Facies predominante:			
Fortunita binkinia a	lat fadias da salidad		
Evolución histórica d	el indice de calidad		

CARACTERÍSTICAS GENERALES MASS 013.008 - ANDOAIN

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: GUIPÚZCOA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
91,63 km²	% Superficie	10,75 %	0,65 %	5,20 %	46,06 %	37,24 %

Características hidrogeológicas:

La masa está formada por materiales carbonatados muy karstificados del complejo Urgoniano, y por un amplio afloramiento de microconglomerados y areniscas del complejo Supraurgoniano, formando un sinclinal suave dispuesto sobre lutitas y areniscas de baja permeabilidad. Hay tres sectores: Hernani, con calizas arrecifales urgonianas, muy karstificadas y en grandes depresiones; Andatza, que contiene materiales flyschoides y margosos de baja permeabilidad (forma parte de una compleja estructura llamada Sinclinal de Donostia-San Sebastián que afecta a materiales desde el Jurásico al Eoceno). Por último, el sector Burutza, formado por materiales urgonianos. La recarga se produce por la infiltración de lluvia y por escorrentías superficiales. La descarga se produce a través de pequeños manantiales, y de forma difusa en arroyos.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.008 - ANDOAIN

<u>Puntos de control</u>	
Piezometría	
Calidad	
C. S. J. Scotts Heide affects	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.008 - ANDOAIN

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)	<u> </u>	** 53	# <u>#</u>	2	1,47

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	* s	:#t
Pérdidas en cauces	8.5	17 8	£#3
Transferencias laterales	3.e.i	:	3.5
Retornos de riego	8.0		*:
Recursos Renovables (RREN)	39,73	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		•	2
Salidas al mar	\$ 2	•	3
Humedales	E	-	딃
Manantiales			
Total Restricciones Medioambientales (RMED)	9,16	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 30,57

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
1,47	30,57	0,05	29,10

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.008 - ANDOAIN

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos					
Análisis de la tendencia de la serie actual					
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales					

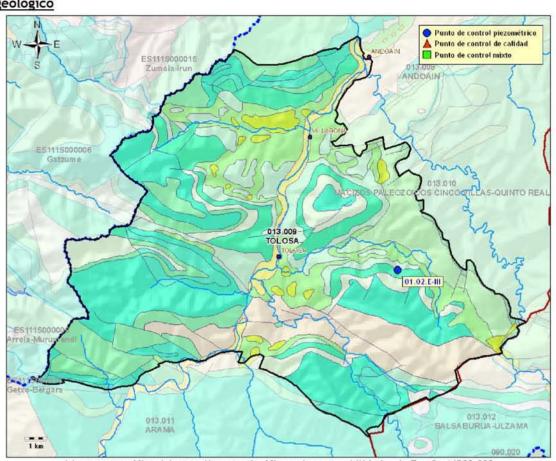
CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.008 - ANDOAIN

Análisis de la serie actual Síntesis de parámetros analizados		
	eriodo común	
, and a constant and	CITOGO COMAIN	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)
Facies predominante:		Observaciones
Evolución del índice de calidad		Observaciones
Clasificación según el Índice de Calidad (Ic): No	disponible	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.008 - ANDOAIN


	8.18 mag (mag)
Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	
Facies predominante:	
The Control of the Co	
Evolución histórica del índice de calidad	

CARACTERÍSTICAS GENERALES MASS 013.009 - TOLOSA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 hase cartográfica del mapa litoestratigráfico y de permeabilidades de España

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: GUIPÚZCOA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
217,96 km ²	% Superficie	24,68 %	9,84 %	15,49 %	36,10 %	13,90 %

Características hidrogeológicas:

Los principales acuíferos están formados por materiales carbonatados pertenecientes al Cretácico (complejos Urgoniano y Supraurgoniano) y al Jurásico. En la zona existen varias depresiones cuaternarias. En el sector situado en el extremo E, los materiales conforman un sinclinal, cuyo flanco meridional está laminado por el cabalgamiento del complejo Urgoniano. La zona de Uzturre es un sinclinal, con suave buzamiento y ligeramente volcado, mientras que cerca de Otxabio, existe una serie monoclinal ondulada buzante al S, que cabalga sobre los materiales supraurgonianos. En la zona central, existe por un lado, un sinclinal volcado, y por otro un sinclinal cuyo eje tiene una dirección NE-SO. La recarga se produce por la infiltración de lluvia y de escorrentías superficiales. La descarga se produce a través de manantiales.

Puntos de control piezométrico

• Red básica Demarcación: 1 punto (periodo del 15/01/2001 al 15/04/2009)

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES

MASh 013.009 - TOLOSA

Ficha 1

Puntos de control

Piezometría

Red básica Demarcación

<u>Código</u>	X (UTM)	Y (UTM)	<u>Cota</u> (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Medidas	Inicio medidas	<u>Fin</u> medidas	Cota NP mínima	Cota NP máxima	<u>Última</u> medida
01.02.E-III	581025	4776175	295,00		300	100	01/2001	04/2009	239,09	299,18	288,20

Calidad

CARACTERÍSTICAS VOLUMÉTRICAS

MASh 013.009 - TOLOSA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>		 변 전	*	0,63

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	*	(
Pérdidas en cauces	8.5.	 5	5 80
Transferencias laterales	X.	-	\$ # 8
Retornos de riego	9 F	-	: €2
Recursos Renovables (RREN)	139,97	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	.
Salidas al mar	\$E.	-	•
Humedales	<u></u>	**	38
Manantiales		- ×	
Total Restricciones Medioambientales (RMED)	17,55	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 122,42

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,63	122,42	0,01	121,79

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.009 - TOLOSA

Ficha 2

Análisis de la tendencia de la serie histórica

277,0 270,0

263,0

256,0 249,0

242,0

550

(27.41)

2001

y = 0.00199x + 269,52209

2002

2003

2004

2005

Tiempo

2007

2008

Tendencia

ascendente

Velocidad (m/año)

0,7277

No es posible el análisis piezométrico por falta de datos históricos

Análisis de la tendencia de la serie actual Serie media común Cota NP (m.s.n.m.) N° valores Periodo común Media Media Minima Media Máxima enero 2001-abril 2009 (100 meses/8,33 años) 239,09 100 272,52 299,18 Nº de piezómetros considerados: 1 (Red Básica Demarcación) * ver reverso ficha 1 NP (msnm) MAS 013.009 (TOLOSA) Análisis de tendencias 305,0 298,0 Coef. corr. Pearson 291,0 284,0 0,12 (corr. muy baja)

Est.P:

1031

2009

CARACTERÍSTICAS HIDROQUÍMICAS

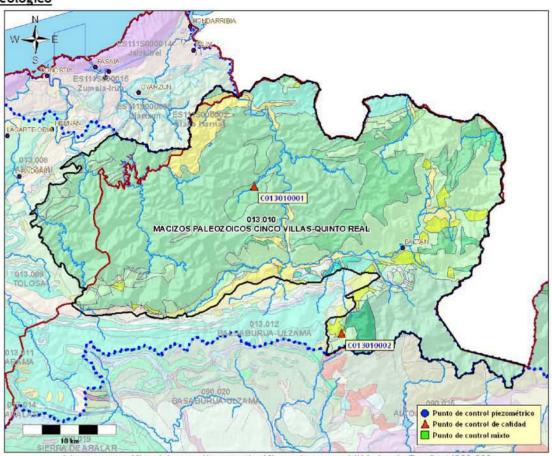
MASb 013.009 - TOLOSA

Análisis de la serie actual Síntesis de parámetros analizados						
Puntos considerados Periodo común						
, and a sommation of the sound	enous comun					
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)				
Facies predominante:						
Evolución del índice de calidad		Observaciones				
Clasificación según el Índice de Calidad (Ic): No o	disponible					

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.009 - TOLOSA

Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	
Facies predominante:	
Evolución histórica del índice de calidad	
Evolución instorica del muice de calidad	
	l l



CARACTERÍSTICAS GENERALES

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-OUINTO REAL

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO, NAVARRA

Provincia/s: GUIPÚZCOA, NAVARRA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
976,91 km ²	% Superficie	3,57 %	1,17 %	2,75 %	45,09 %	47,20 %

Características hidrogeológicas:

La masa está constituida por materiales paleozoicos y triásicos. Los primeros incluyen pizarras, cuarcitas, grauvacas, calizas, dolomías y magnesitas. Los materiales triásicos son areniscas, arcillas, conglomerados y un tramo de calizas (Muschelkalk). Además aparecen formaciones graníticas (granitos de Peñas de Haya); y ofitas, basaltos y diabasas de origen volcánico. Debido a la tectónica hercínica y alpina los afloramientos están muy compartimentados, y los acuíferos suelen ser, en general, numerosos y de poca importancia; estos corresponden a zonas de alteración de las rocas o en formaciones carbonatadas y areniscas con permeabilidad por fisuración. La recarga se produce por infiltración de lluvia en afloramientos permeables, y la descarga se asocia a zonas alteradas de las pizarras, con caudales inferiores a 1 l/s.

Puntos de control piezométrico

Puntos de control hidroquímico

Red básica Demarcación: 2 puntos (periodo del 05/06/2007 al 06/03/2008)

CARACTERÍSTICAS GENERALES

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL

Puntos de co	ntrol										
Piezometría											
Calidad											
In word											
Red básica D	emarcac	ión							Última i	nedida	
<u>Código</u>	<u>X</u>	<u>Y</u>	<u>Cota</u>	Naturaleza	Prof.	Análisis	Inicio	<u>Fin</u>	Conductividad	Nitratos	-
	(UTM)	(UTM)	(m.s.n.m.)		<u>(m)</u>				(µS/cm)	(mg/l)	
C013010001	604900	4784815	128,00	manantial		2	06/2007	03/2008	305,00	11,80	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica				th.	Análisis con balanc	e anómalo:	0
C013010002	614230	4768985	722,00	manantial		2	06/2007	03/2008	220,00	2,30	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica	di.				Análisis con balanc	e anómalo:	0

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)	<u> </u>		 변 전	*	0,32

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	8.	-8	
Pérdidas en cauces	8.50	- 5	:::0
Transferencias laterales		-	(1)
Retornos de riego	2.00		: €0
Recursos Renovables (RREN)	292,25	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	<u> </u>	•	•
Salidas al mar	\$E	•	
Humedales	je	*	3
Manantiales		•	•
Total Restricciones Medioambientales (RMED)	46,37	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 245,88

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,32	245,88	0,00	245,56

Clasificación según el Índice de Explotación (le): Disponibilidad

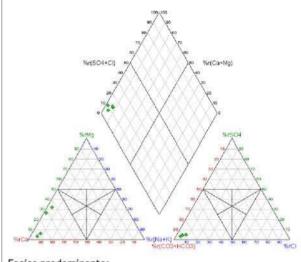
CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos						
Análisis de la tendencia de la serie actual						
No es posible el análisis piezométrico por falta de datos actuales						

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL

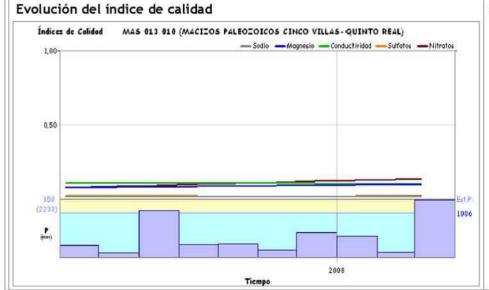

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados	2 (Red	Básica De	marcación)	Periodo común		junio 2007-marzo 2008 (10 meses/0,83 años)		
Parámetro	2	N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	4	267,21	262,50	272,50	262,50	O -13,2727 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		4	4,56	4,00	5,05	5,05	() 1,3936 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		4	5,57	3,90	7,05	7,05		50,00
Sodio (mg/l Na)		4	3,63	3,10	4,10	4,10	1,3273 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		4	4,81	4,60	5,05	4,60	• -0,5973 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (4 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

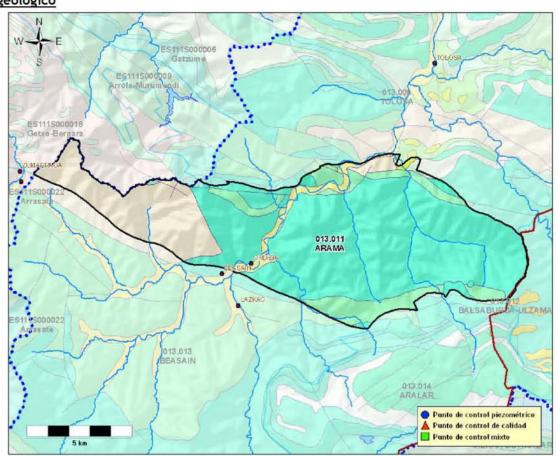
Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,11	
Magnesio	0,10	
Nitratos	0,14	
Sodio	0,02	
Sulfatos	0,02	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.010 - MACIZOS PALEOZOICOS CINCO VILLAS-QUINTO REAL


Análisis de la serie histórica							
Síntesis de parámetros analizados							
Puntos considerados	Periodo común						
Diagrama de Piper y Facies hidroquímica	-						
Facies predominante:							
Evolución histórica del índice de calidad							

CARACTERÍSTICAS GENERALES MASS 013.011 - ARAMA

Ficha 1

Mapa hidrogeológico

* base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: GUIPÚZCOA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
102,31 km ²	% Superficie	4,83 %	-	83,30 %	11,54 %	0,33 %

Características hidrogeológicas:

Limita al E con Navarra y al SE con las calizas arrecifales del Aptiense de la Sierra de Aralar. El límite SO, que separa esta masa de la de Beasain, es el contacto tectónico con las lutitas y areniscas del Cretácico medio de esta masa. El límite N se define, en su parte occidental, por la divisoria Norte III Cuencas Internas del País Vasco y, en su mitad oriental, por el contacto con el Dominio Hidrogeológico de la Plataforma Alavesa. Formada principalemente por flysch calcáreo del Cretácico superior, que integra margas con intercalaciones de niveles de calizas y margocalizas. En general son materiales de baja o muy baja permeabilidad. La recarga se produce por la infiltración de la precipitación. La descarga se produce a favor de manantiales de pequeña entidad.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.011 - ARAMA

Puntos de control	
Piezometría	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.011 - ARAMA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(0)	<u> </u>	<u>2</u>	## Re	-	0,04

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	•	:#t
Pérdidas en cauces	8.5	•	£#3
Transferencias laterales	3.e.i		3.5
Retornos de riego	9.0		*:
Recursos Renovables (RREN)	44,67	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	WE.	-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	•	3
Manantiales		•	
Total Restricciones Medioambientales (RMED)	12,33	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 32,34

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,04	32,34	0,00	32,30

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASS 013.011 - ARAMA

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

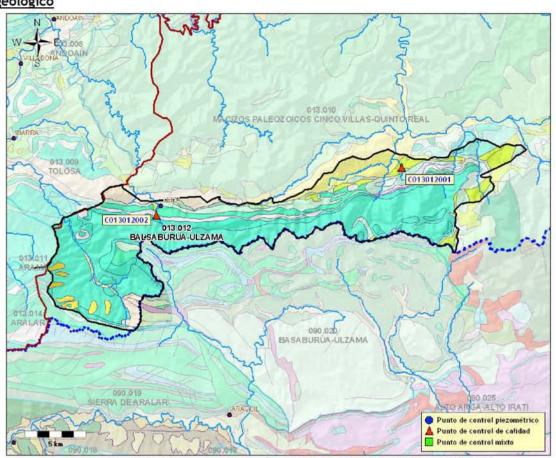
CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.011 - ARAMA

Análisis de la serie actual Síntesis de parámetros analizados		
	eriodo común	
, and a constant and	CITOGO COMAIN	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)
Facies predominante:		Observaciones
Evolución del índice de calidad		Observaciones
Clasificación según el Índice de Calidad (Ic): No	disponible	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.011 - ARAMA


Análisis de la serie histórica	
Síntesis de parámetros analizados	
Puntos considerados	Periodo común
Diagrama de Piper y Facies hidroquímica	
Facies predominante:	
Evolución histórica del índice de calidad	
Evolución histórica del índice de calidad	

CARACTERÍSTICAS GENERALES MASS 013.012 - BALSABURUA-ULZAMA

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 hase cartográfica del mapa litoestratigráfico y de permeabilidades de España

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: NAVARRA

Provincia/s: NAVARRA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
214,29 km ²	% Superficie	21,20 %	10,37 %	50,01 %	15,99 %	2,44 %

Características hidrogeológicas:

Limita al S con la cuenca del Ebro y al O con la provincia de Guipúzcoa. El límite septentrional es el contacto del flysch calcáreo del Cretácico superior con los materiales triásicos y carboníferos de la masa Macizos Paleozoicos de Cinco Villas-Quinto Real. El límite E es el contacto con las ofitas de edad Tríasico superior. Está constituida por carbonatos del Lías inferior, calizas del Dogger-Malm, calizas arrecifales de la facies Urgoniana y flysch del Cretácico sup., con intercalaciones margo-arcillosas del Keuper, Lías medio-superior, Jurásico terminal-Cretácico inicial y Cretácico sup. Se encuentran dispuestos en amplios sinclinales, cubiertos por arcillas del Cretácico inferior, y por anticlinales cabalgados, con direcciones E-O. La recarga se produce por infiltración de lluvia, y la descarga a través de manantiales.

Puntos de control piezométrico

Puntos de control hidroquímico

Red básica Demarcación: 2 puntos (periodo del 05/06/2007 al 06/03/2008)

CARACTERÍSTICAS GENERALES

MASS 013.012 - BALSABURUA-ULZAMA

Puntos de co	ntrol										
Piezometría											
Calidad Red básica D	emarcac	ión							Última	medida	
<u>Código</u>	<u>X</u> (UTM)	Y (UTM)	Cota (m.s.n.m.)	<u>Naturaleza</u>	Prof. (m)	Análisis	Inicio	<u>Fin</u>	Conductividad (µS/cm)	Nitratos (mg/l)	
C013012001	608160	4773690	199,00	manantial		2	06/2007	03/2008	310,00	3,50	Ī
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica				1	Análisis con balanc	e anómalo: 0	
C013012002	588135	4769775	481,00	manantial		2	06/2007	03/2008	320,00	5,50	
	<u>Fa</u>	acies (prom	nedio): Bicarbor	natada cálcica	*!-		10.	**	Análisis con balanc	e anómalo: 0	

CARACTERÍSTICAS VOLUMÉTRICAS

MASb 013.012 - BALSABURUA-ULZAMA

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
	<u> </u>	# 58	#1 21	*	0,01

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2 -	* s	:#t
Pérdidas en cauces	8.5	17 8	£#3
Transferencias laterales	3.e.i	:	3.5
Retornos de riego	9.0		*:
Recursos Renovables (RREN)	127,28	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico			3
Salidas al mar	<u> </u>		
Humedales	je:	#1	
Manantiales		•	<u></u>
Total Restricciones Medioambientales (RMED)	12,86	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 114,42

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,01	114,42	0,00	114,41

Clasificación según el Índice de Explotación (le): Disponibilidad

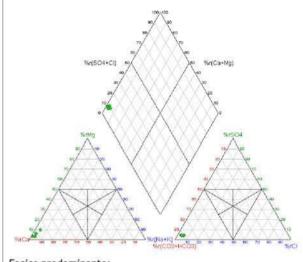
CARACTERÍSTICAS PIEZOMÉTRICAS

MASb 013.012 - BALSABURUA-ULZAMA

Análisis de la tendencia de la serie histórica	
No se posible al publicio pionere étuico per falte de deter bistériese	
No es posible el análisis piezométrico por falta de datos históricos	
Análisis de la tendencia de la serie actual	
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales	

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 013.012 - BALSABURUA-ULZAMA

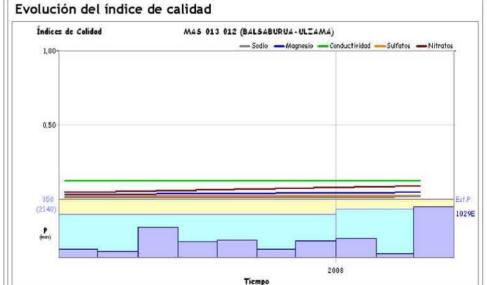

Ficha 3

Análisis de la serie actual

Síntesis de parámetros analizados

Puntos considerados 2 (Red Básica Demarcación)			Period	Periodo común junio 2007-marzo 2008 (10 meses/0,83 a			años)	
Parámetro		N° valores	Media	Media mínima	Media máxima	Último valor	Tendencia y velocidad (unidad/año)	Valor Límite
Conductividad (µS/cm	a 20°C)	4	311,70	308,00	315,00	315,00	Ο 9,2909 (μS/cm a 20°C/año)	2500,00
Magnesio (mg/l Mg)		4	2,00	1,55	2,40	2,40	1,1282 (mg/l Mg/año)	50,00
Nitratos (mg/l NO3)		4	3,51	2,40	4,50	4,50	(2,7873 (mg/l NO3/año)	50,00
Sodio (mg/l Na)		4	2,55	2,10	2,95	2,95	1,1282 (mg/l Na/año)	200,00
Sulfatos (mg/l SO4)		4	5,85	5,80	5,90	5,80	-0,1327 (mg/l SO4/año)	250,00

Diagrama de Piper y Facies hidroquímica


Facies predominante: 100,00 % Bicarbonatada cálcica (4 muestra/s)

Valores del Índice de Calidad (Ic)

Fórmula: $Ic = \frac{[P] (Concentración del parámetro)}{[V_L] (Valor límite impuesto por Legislación)}$

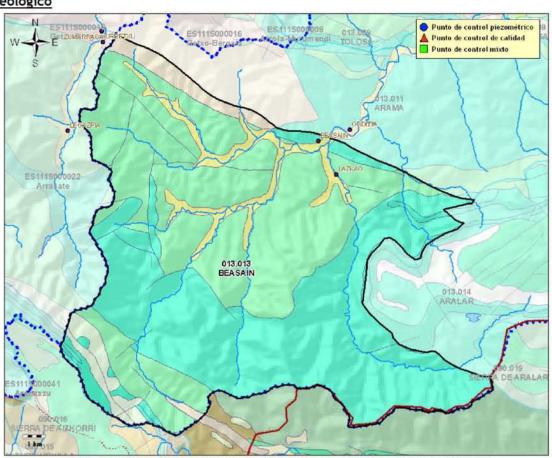
Parámetro	Índice de Calidad (Ic)	Situación actual
Conductividad	0,13	
Magnesio	0,05	
Nitratos	0,09	
Sodio	0,01	
Sulfatos	0,02	

Clasificación según el Índice de Calidad (Ic): Bueno

Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 013.012 - BALSABURUA-ULZAMA


Análisis de la serie h	istórica		
Síntesis de parámetr	os analizados		
Puntos considerados		Periodo común	
Diagrama de Piper y	Facies hidroquímica		
Facies predominante:			
Fortunita binkinia a	lat fadias da salidad		
Evolución histórica d	el indice de calidad		

CARACTERÍSTICAS GENERALES MASS 013.013 - BEASAIN

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 base cartográfica del mapa litoestratigráfico y de permeabilidades de España

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: GUIPÚZCOA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
195,24 km ²	% Superficie	7,20 %	4	45,89 %	46,63 %	0,28 %

Características hidrogeológicas:

Limita al S con la divisoria del Ebro. El límite O se define en la divisoria de las Cuencas Internas del País Vasco. Al E limita con los afloramientos carbonatados del Cretácico inferior de la masa Aralar; y al N con el Flysch calcáreo de la masa Arama. La masa está constituida por una alternancia de areniscas y lutitas del Albiense-Cenomaniense; margas, brechas calcáreas y limolitas del Cretácico inferior; y materiales de mayor permeabilidad, como calizas arrecifales del Aptiense, que han sufrido una intensa karstificación, y brechas calcáreas del Albiense. El sector más importante, Troya, se ubica en la zona S del Sinclinorio de Bizkaia, al SO de su cierre. La recarga se produce por la infiltración de la precipitación caida sobre los afloramientos permeables o por aportes laterales. La descarga se produce mediante manantiales.

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.013 - BEASAIN

Puntos de control	
Piezometría	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASS 013.013 - BEASAIN

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
		ii Si	# <u>#</u>		3,42

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	(
Pérdidas en cauces	8.5.	17 8	5 80
Transferencias laterales	X.	•	\$ # 8
Retornos de riego	9 F		: €2
Recursos Renovables (RREN)	65,16	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico	19	•	3
Salidas al mar	555	-	
Humedales	(#)	-	
Manantiales		•	
Total Restricciones Medioambientales (RMED)	8,13	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 57,03

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)	
3,42	57,03	0,06	53,61	

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS

MASS 013.013 - BEASAIN

Análisis de la tendencia de la serie histórica No es posible el análisis piezométrico por falta de datos históricos		
Análisis de la tendencia de la serie actual		
Análisis de la tendencia de la serie actual No es posible el análisis piezométrico por falta de datos actuales		

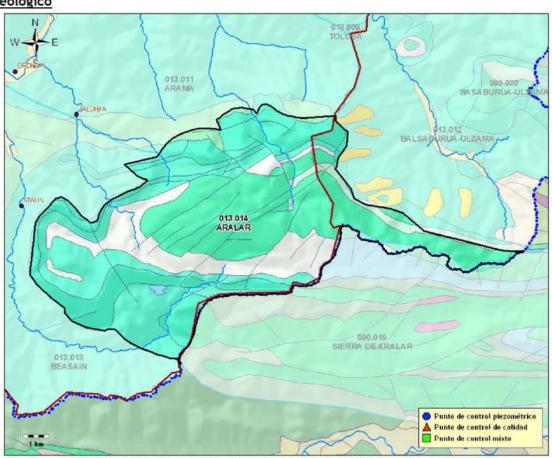
CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.013 - BEASAIN

Análisis de la serie actual Síntesis de parámetros analizados		
Puntos considerados	eriodo común	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Cal	idad (Ic)
Facies predominante:		
Evolución del índice de calidad Clasificación según el Índice de Calidad (Ic): No de		Observaciones

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.013 - BEASAIN


Análisis de la serie histórica				
Síntesis de parámetros analizados				
Puntos considerados	Periodo común			
Diagrama de Piper y Facies hidroquímica				
Facies predominante:				
Evolución histórica del índice de calidad				
Evolución histórica del índice de calidad				

CARACTERÍSTICAS GENERALES MASS 013.014 - ARALAR

Ficha 1

Mapa hidrogeológico

base cartográfica del mapa litoestratigráfico y de permeabilidades de España 1/200.000 🕆

Demarcación Hidrográfica: CANTÁBRICO

Comunidad/es Autónoma/s: PAÍS VASCO

Provincia/s: GUIPÚZCOA, NAVARRA

Superficie:	Permeabilidad	K muy alta	K alta	K media	K baja	K muy baja
79,10 km ²	% Superficie	37,81 %	2,38 %	25,05 %	34,76 %	<u>~</u>

Características hidrogeológicas:

Limita al N por el contacto con los depósitos de Flysch calcáreo de la masa Arama; al NE con los carbonatos urgonianos de Basaburua-Ulzama; y al O con las margas, areniscas, calcarenitas y brechas calcáreas albienses, de la masa Beasain. El límite SE coincide con la divisoria de la cuenca del Ebro. Es un acuífero de naturaleza carbonatada: calizas con intercalaciones de margas y margocalizas del Dogger y materiales calizo-dolomíticos del Malm; complejo Purbeck-Weald, calizas de sérpulas y margas; complejo Urgoniano, calizas arrecifales; y complejo Supraurgoniano, lutitas y areniscas. La recarga se produce por infiltración de la precipitación sobre los afloramientos permeables y escorrentías superficiales. La descarga se produce a través de manantiales y en algunas zonas, a los arroyos que disectan el sector (sector Osinbeltz).

Puntos de control piezométrico

Puntos de control hidroquímico

CARACTERÍSTICAS GENERALES MASS 013.014 - ARALAR

<u>Puntos de control</u>	
Piezometría	
Calidad	
Calidad	

CARACTERÍSTICAS VOLUMÉTRICAS

MASb 013.014 - ARALAR

Ficha 2

Análisis cuantitativo

Extracciones

Abastecimiento	Agricultura y ganadería	Industria	Recreativo	Otro	Total (B) (hm³/año)
(E)	2) J	17 18 18	-	0,00

Fuente: D.H. Cantábrico (2009)

Recurso disponible

Recursos renovables

Parámetro	Valor (hm³/año)	Periodo	Fuente
Infiltración	2.	* s	.
Pérdidas en cauces	8.5.	17 8	\$. 50
Transferencias laterales	X.	•	\$ # .8
Retornos de riego	9 F		**
Recursos Renovables (RREN)	58,27	Fuente: D.H. Cantábrico (2009)	

Restricciones medioambientales

Parámetro	Valor (hm³/año)	Periodo	Fuente
Caudal ecológico		-	2
Salidas al mar	\$ 2	-	3
Humedales	je:	-	5 0
Manantiales			
Total Restricciones Medioambientales (RMED)	11,07	Fuente: D.H. Cantábrico (2009)	

Recurso Disponible (RDIS = RREN - RMED) (hm³/año) 47,20

Índice de explotación y disponibilidad

Extracciones (B) (hm³/año)	Recurso disponible (RDIS) (hm³/año)	Índice de explotación (le = B/RDIS)	Recurso no comprometido (hm³/año)
0,00	47,20	0,00	47,20

Clasificación según el Índice de Explotación (le): Disponibilidad

CARACTERÍSTICAS PIEZOMÉTRICAS MASS 013.014 - ARALAR

Análisis de la tendencia de la serie histórica		
No es posible el análisis piezométrico por falta de datos históricos		
Análisis de la tendencia de la serie actual		
No es posible el análisis piezométrico por falta de datos actuales		

CARACTERÍSTICAS HIDROQUÍMICAS

MASb 013.014 - ARALAR

Análisis de la serie actual Síntesis de parámetros analizados		
	eriodo común	
, and a constant and	CITOGO COMAIN	
Diagrama de Piper y Facies hidroquímica	Valores del Índice de Ca	lidad (Ic)
Facies predominante:		Observaciones
Evolución del índice de calidad		Observaciones
Clasificación según el Índice de Calidad (Ic): No	disponible	

CARACTERÍSTICAS HIDROQUÍMICAS

MASS 013.014 - ARALAR

Análisis de la serie histórica				
Síntesis de parámetros analizados				
Puntos considerados	Periodo común			
Diagrama de Piper y Facies hidroquímica				
Facies predominante:				
Evolución histórica del índice de calidad				
Evolución histórica del índice de calidad				